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Abstract: 

Decision-making systems are of utmost importance for the autonomy of robotics so that robots may negotiate adaptive and 

complicated environments with very little human interference. This research presents a detailed study of and development of 

an autonomous robotic decision-making system through generalized AI techniques such as Neural Networks, Support 

Vector Machines, and Decision Trees. The design of a computer system capable of interpreting a variety of sensory inputs 

consisting of obstacle distance, battery levels, wheel speed, type of terrain, avenue weather conditions, ambient 

temperature, and robot tilt constitutes the main objective of this research so that it may dependably decide on the best 

action to take during a robotic mission. The study uses a carefully chosen dataset with 500 balanced observation points 

produced from realistic robot operations. Various advanced data preprocessing techniques, such as normalization, noise 

removal, and feature selection, were performed to improve the quality of the models. Performance-wise, the ANN model 

proved to be the most accurate (99%), most precise, and had the highest recall, thus clearly outperforming SVMs and DTs. 

Nevertheless, the SVM model especially finds its use in working with system requirements that need classification, 

interpretability, and computational efficiency, whereas, in contexts where safety is paramount, a DT model provides clear 

and transparent decision logic. The study advances the paradigm of AI-driven decision-making to solve intermediate-level 

decision problems for autonomous, flexible, and efficient robotic operations. More lines of research could go into hybrid AI 

and real-time implementation in critical sectors like disaster response and hazardous material management. 

Keywords: Robotic Decision Making, Artificial Neural Networks, Support Vector Machines, Decision Trees, 

Autonomous Robotics. 

1. Introduction 

Decision-making systems are an important component of intelligent robot platforms that enable machines to 

cope with dynamic and complex environments. In addition, as robotics applications continue to develop rapidly 

for industrial, medical, logistics, and rescue purposes, machine learning approaches for interpreting sensory data 

and sensing contextual information have arisen that can help create effective judgments about the appropriate 

response to identified objectives or mitigate potential risks [1]. 

A robotic decision-making system is a computational and algorithmic framework that allows a robot to process 

sensor data, consider a given environment, and adopt the best course of action (Russell & Norvig, 2016). 

Robotic decision-making systems typically employ diverse approaches in the field of artificial intelligence 

(AI)—based on rule-based reasoning, artificial neural networks, machine learning (ML), and reinforcement 

learning (RL)—to support adaptive and context-aware behavior (Russell & Norvig, 2016) [2]. 

Considering uncertainty (uncertainty-mediated decision making) as an important parameter of robotic 

performance, safety, and energy efficiency is a key consideration in some systems, such as: In the presence of 

obstacles or variable weather conditions, a robot can react rapidly and safely to changes in conditions, which can 

result from situations being simultaneously seen, observed and measured by the interacting robot. For this 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:islam.alhareem@gmail.com
mailto:haneen.slsl.2003@gmail.com


East Journal of  Engineering
 

 

 

2 © East Journal of Engineering 

reason, developing effective decision models requires the capacity for collecting multiple dimensions of sensory 

data coupled with advanced analytical techniques that allow for the accurate capture of key behavioral styles and 

context-relevant cues [3]. 

In this paper, a structured dataset modeled real-world robotic operations under different environmental and 

internal conditions is investigated. The dataset contains various variables such as obstacle distance, battery level, 

wheel speed, terrain type, weather condition, wind speed, ambient temperature, robot tilt, mission type, and 

mission outcome (success or failure). A total of 100 operational cases are studied, which provide a rich 

experimental environment for the development of data-driven models for the correlation of environmental 

variables with decision outcomes. 

By analyzing this dataset, machine learning techniques are used to identify variables that influence mission 

success or failure most, e.g., low battery levels, extreme robot tilt angles or demanding terrain may significantly 

contribute to failures during operational missions. Based on this analysis, adaptive artificial intelligence systems 

are trained on the data based on operational experience, which can learn from operational experience over time 

to improve decisions. 

This research seeks to enable such flexibility by introducing a prototype AI-based decision-making model that 

can map environmental and sensory inputs to mission outcomes. Through proposed model not only increases the 

robotic efficiency in complex settings, decreases the operational errors but also improves the task execution, 

which can be with high stakes during rescue or high hazardous materials handling. 

Ultimately, this study contributes to a deeper understanding of robotic decision-making mechanisms and 

establishes a solid, data-driven foundation for the development of more autonomous, reliable, and responsive 

robotic systems. 

 

Figure 1: The forward and inverse models of cognitive science [4]. 

In this study, we discuss cognitive science research on forward models of how people make decisions and 

inverse models, which humans employ to reason about other agents. Cognitive scientists are increasingly 

employing computational methods such as probability theory, reinforcement learning, and statistical machine 

learning to describe forward and inverse models of human decision-making. This opens up prospects for cross-

talk and collaboration between cognitive science and control studies. 

Engineers designing automated systems – as both forward and inverse models – we will also highlight how 

recent work in computational cognitive science has emphasized formalisms that will be very familiar to 

researchers coming from a background of optimization and control. Cognitive scientists increasingly use ideas 

from probability theory, statistical machine learning, and reinforcement learning in specifying models of human 

cognition. This creates an opportunity to develop a common language for describing the behavior of both 

humans and machines and supports easier integration of insights from cognitive science into control[5], [6]. 
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2. Related Work 

By combining machine learning, control theory, and artificial intelligence, autonomous robotics develops 

intelligent robots capable of operating in changing conditions with limited human assistance. Autonomous 

robotics is based on machine learning algorithms that enable tasks such as sensing, navigation, and adaptive 

decision-making. These modern algorithms are used in many structural sectors, such as cooperative trees (DT), 

random forests (RF), advanced communication tools (SVM), and artificial neural networks (ANN), with a focus 

on comparative evaluation and examples. This review examines how such algorithms are used in studies [7]. 

2.1. Review of Major Studies 

Cai et al. (2021) used the Denavit_Hartenberg (D-H) parameter approach to developing a kinematic control 

framework for robotic manipulators, Their methodology used a structured, rule-based design to make joint angle 

and robotics link transformation calculations easier, Despite not using machine learning straightforward, the 

study's hierarchical logic closely resembles a decision tree (DT) approach in terms of branching and state 

evaluation, Their simulation demonstrated how these structured principles enhanced trajectory responsiveness 

and accuracy, especially in areas with lots of obstacles, The significance of interpretable, lightweight models that 

work in real-time applications was underlined by the authors [7]. 

 

Figure 2: Kinematic model of the manipulator by D-H parameters  

Francis et al. (2022) applied all kinds of ML techniques, including ANN and SVM, to analyze gas sludge (GSL) 

using a mobile robot. The capabilities of models concerning dealing with the noisy nature of volatile chemical 

data were assessed. In the binary case, whereas SVMs could give a quite accurate classification, ANNs were 

found to be more flexible and more capable of learning patterns of greater complexity to identify gas sources and 

intensity. Hence, the research states that, with multi-source cases, supervised learning along with probabilistic 

mapping greatly improves the accuracy of the localization algorithms. Thus, the results indicate the ANN scored 

a 91% accuracy among others. The paper details the diagrammatic configurations of the system, as the figures 

could not be extracted directly [8]. 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM) have been observed with prominence in 

autonomous robotics throughout the literature of our present day. Francis et al. (2022) documented the SVM to 

be effective in classifying noisy sensor readings in the context of gas source localization: It defines its boundary 

very tightly and can therefore be employed faithfully to localize many gas sources in an area, employing 

probabilistic mapping techniques. In parallel, Palanivel and Muthulakshmi (2024) incorporated ANN models 

into a quantum reinforcement learning framework (P-QTFPR-DM) to enhance its real-time decision-making. 

Their Q-learning algorithm based on ANN converged significantly quicker than conventional models and did so 

with enhanced navigation performance. This discussion suggests how the two can complement each other: On 

the one hand, the SVM is particularly suited to well-structured classification tasks such as filtering sensor inputs 

and environment segmentation. On the other hand, ANN-based approaches are best suited to policy learning and 

dynamic control where flexibility is a problem. With ANN handling long-term learning and SVM providing firm 

perception, more and more systems are emerging at the boundary where their synergistic approach toward future 

robotics lies [9] 

Palanivel and Muthulakshmi (2024) proposed a quantum-based learning model, P-QTFPR-DM, based Artificial 

Neural Networks approach with quantum computing. This model improves learning convergence of 

reinforcement learning through quantum state-value estimation and fractal-like prioritized experience replay. 
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Figure 3: Gas localization configuration using SVM and ANN models [10]. 

 

 
Figure 4: The scatter plot of the simulated data and the actual data of each model (a) the training stage of SVM-

GS; (b) the test stage of SVM-GS, (c) the training stage of WSVM-GS; (d) the test stage of WSVM-GS [11]. 

 

Concerning ANNs, a quantum circuit handling state-action exploration through entangled superposition 

comprises ANNs. Their simulations demonstrated a 30% improvement in learning time with a success rate of 
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95% for reaching targets. This architecture illustrates the possibility that quantum-powered powered scalable, 

and efficient robotic learning systems can be achieved by quantum ANN topologies. 

 

Figure 5: Quantum ANN reinforcement model architecture. 

The DM-SPP-4 algorithm, which uses grid-based heuristics and deterministic logic, was presented by Dhouib 

(2024) for mobile robot path planning. The algorithm calculates optimal pathways faster than traditional 

techniques like A* or Dijkstra by using a contingency matrix. When tested on 41x41 grid maps, DM-SPP-4 

outperformed baseline models in static obstacle situations, producing valid pathways in less than 0.05 seconds. 

Despite not being a learning-based model, its rule-based structure mimics the planning logic of a decision tree. 

Path overlays in several simulated scenarios were used to visualize the system's performance. 

The A* (A-star) algorithm is a famous algorithm in the realms of robot path planning and graph search. It is 

deemed the fastest algorithm for determining the shortest path between two nodes in an environment. 

The DM-SPP-4 algorithm is faster than techniques like A* and Dijkstra because it uses a contingency matrix 

instead of relying solely on heuristics, making it more efficient in certain cases . 

 

 

Figure 6: DM-SPP-4 path planning result on an easy map [12]. 

2.2.   Comparative Analysis of Algorithms 

When applied to autonomous robotic systems, each algorithm's unique capabilities are shown throughout the 

examined literature. According to Cai et al. (2021), decision trees (DT) provide deterministic control and 

transparency that are beneficial for rule-based robotic manipulation. Francis et al. (2022) showed that Random 

Forests (RF) and Support Vector Machines (SVM) are efficient in handling multi-source contexts and sensor 

uncertainty. Particularly, SVMs are renowned for their accuracy in applications involving binary classification. 
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ANN, on the other hand, is more versatile and performs better in learning-based navigation (Palanivel & 

Muthulakshmi, 2024). Both Francis and Palanivel's work emphasizes the complementary nature of ANN and 

SVM, which points to the benefits of hybrid systems that combine robust perception (SVM) and real-time 

adaptation ANN. This emerging direction is key to enabling robots to operate effectively in uncertain and 

dynamic environments. 

Table 1: A comparative of related studies  
Study Algorithms Dataset Type Key Features Performance 

Metric 
Main Contribution 

Cai et al.[2021] Decision 

Tree (DT) 
Robotic arm 

sensor data 
Joint angle 

estimation, 

movement 

modeling 

- Used D-H model with 

DT logic for 

manipulator control 

Francis et al. 

[2022] 
Random 

Forest 

(RF), SVM 

Gas sensor -

localization 

logs 

Sensor fusion, 

classification, 

probabilistic 

mapping 

Accuracy: 91% Applied ML models 

to enhance gas 

localization in multi-

source environments 

Palanivel _ 

Muthulakshmi. 

[2024] 

ANN Q-learning 

simulation 

data 

Quantum-

enhanced ANN 

for decision-

making 

Accuracy: 95% Used QNN for fast 

navigation in complex 

environments 

Francis 

_Palanivel 
ANN vs. 

SVM 
Comparative 

(literature-

based) 

Policy learning 

vs. binary 

classification 

F1-

score/Precision 
Highlighted the 

complementarity 

between ANN 

adaptability and SVM 

precision 

 

3.  Methodology 

3.1. Overview  

The purpose of this work is to develop a system that allows robots to make decisions on their own in dynamic 

and complex environments with minimal human help. According to the approach discussed, the system is 

designed by using its sensory data to process and decide on reactions transparently. Machine learning models are 

used to help the decision process improve and adapt as time goes on. Autonomous decision-making has been 

crafted to incorporate sensor data with machine learning mechanisms to influence the robot's actions. The robot 

obtains environmental information through diverse sensors (e.g.,  proximity sensors, temperature sensors, 

battery level sensors, and so on). Machine learning algorithms analyze it in real time to make decisions to fulfill 

certain predefined mission objectives, like rescue operations, exploration, transportation, etc. [13]. 

3.2. Machine Learning Techniques 

The heart of our system relies on three key machine-learning models: ANN, SVM, and DT. They select 

the model due to its success in decision problems,  high ability to cope with dynamics, and an 

uncertain environment. Following is an introduction to each of them: 

3.2.1.  Artificial Neural Networks  

Artificial Neural Networks (ANNs) are a family of machine learning algorithms inspired by the structure and 

functioning of the human brain to identify patterns and make predictions. At the core of the ANNs are neurons 
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that are organized in layers. Each neuron takes the input, does some weight multiplication, passes through an 

activation function, and emits the result. 

ANNs are considered a state-of-the-art computer-aided solution to very complex types of information 

processing, having multi-layer networks and activities of a human-like mind in the direction of pattern matching 

and information extraction. The mathematical equation defining the output of neurons describes how inputs from 

different sensors, like images, sound, and the environment, are passed on to give very specific response cases. In 

this equation  xirepresents the sensory inputs, while the values of the weights wi Identify the relative importance 

of affecting the final output caused by the input. The bias term b Adjusts and improves the model output. The 

activation function f Implements converting the weighted inputs into actual usable outputs. This kind of strategy 

in robotics improves the operational accuracy of the robots to some extent in making decisions involving 

autonomous navigation or interactive decisions with the environment. Further, robots are made to be more 

flexible and intelligent to rapidly respond to changing conditions; this goes a long way in helping the robot's 

ability to adapt to different environments [14] 

The output y of a neuron is defined as: 

     𝑦 = 𝑓(∑𝑖=1
𝑛  𝑤𝑖𝑥𝑖 + 𝑏)                      (1) 

where: 

- 𝑥𝑖 Represents the sensory inputs (e.g., data from sensors such as images, sounds, or environmental readings). 

-  𝑤𝑖 ∶ The weights applied to each input are learned during the training phase. 

- 𝑏 Is the bias term adjusting the activation function for better adaptability? 

- 𝑓  Is the activation function (commonly Sigmoid, ReLU, or Tanh) which introduces non-linearity into the 

model and helps in solving complex decision-making tasks. 

ANNs are particularly well-suited for autonomous systems due to their ability to process unstructured data and 

improve decision-making over time through training. 

 

Figure 7: The optimal ANN structure and a flow chart of the training process 
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The ANN mechanism used in robotic decision-making is illustrated in the diagram. The activity begins with 

some input variables, i.e., tilt angle, temperature, and sensor distance, followed by moving through a hidden 

layer with the Tan-Sigmoid activation function, which helps identify patterns in processing it. The final choice is 

made through the output layer, which uses a linear activation function. The network then goes through a training 

session in iterations with error computation and update, and can finally be used in making real-time decisions 

when a threshold acceptable error level is achieved or the maximum number of iterations is completed. 

3.2.2. Support Vector Machines  

Support Vector Machines are supervised learning algorithms designed primarily for robust classification and 

regression tasks. The primary objective of an SVM is to establish an optimal hyperplane that distinctly separates 

data points of different classes, maximizing the margin between the closest data points (support vectors).  

SVM can be expanded in nonlinear classification with the help of the kernel trick, which maps the data into a 

larger space to help identify a hyperplane for division. Among its key strengths, SVM can solve complex issues 

since it can separate them into a new format.  

SVM supports a lot of different applications like tagging texts, identifying patterns, and catching outliers. It is 

strong in handling huge amounts of information, which makes it the first choice for topics like computer vision 

and the analysis of medical data. Having many data points or messy data may make SVM have issues, but it also 

works very well with different kernel functions [3]. 

The mathematical representation is: 

 

𝐰𝑇𝐱 + 𝑏 = 0                      (2) 

Where: 

- 𝑤 : is the weight vector. 

- 𝐱 : feature vector representing environmental states. 

- 𝑏 : is a coefficient that indicates the constant part of the model. 

We try to increase the distance between the two sets of lines by calculating: 

            𝜌 =
2

‖𝑤‖
                             (3) 

Where ‖𝑤‖ Is the norm of the weight vector 𝑤. This equation indicates the distance between the decision 

boundary and the closest data point from each class. 

The classification rule follows: 

𝑦 = sign(𝐰𝑇𝐱 + 𝑏)           (4) 

Where: 

𝑦 is the class label (+1 or 1) 

SVM was selected because of its strict mathematical foundations, robustness toward noisy data, and high 

efficiency in defining boundaries among classes, even in complex non-linear arrangements. The SVM technique 

seemed to be an appropriate choice. 
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Figure 8: Schematic of the SVM. 

In Figure 8, the SVM concept is broadly explained. A hyperplane separates the input space representing two 

classes, +1 and -1. The hyperplane could either be a line (in two dimensions) or a surface (in higher-dimensional 

spaces) according to the dimensionality of the input space. The points near the hyperplane defining its optimal 

position and orientation are called support vectors. The margin (the distance to the nearest support vectors) is 

thereby maximized by minimizing the norm of the weight vector (||w||). This leads to better classification 

accuracy and, therefore, better generalization of the model. 

 

Figure 9: The typical workflow for developing a ML model using SVM for classification or regression tasks. 

First comes the preprocessing of patient data, which includes normalization, cleaning, extraction, reduction, and 

feature selection. This is then followed by the creation of a predictive model by the selection of an appropriate 

classifier and estimation of parameters, hyperparameter tuning, training of the classifier, and evaluation of its 

performance. The final model is utilized for the new patient data to predict the outcomes. SVM was originally 

developed for binary classification based on statistical learning theory but has subsequently and successfully 

been reformulated for use in many classification problems. The present diagram indicates some of the main 

phases involved, particularly data preprocessing and careful model training, hyperparameter optimization, and 

robust evaluation, which constitute an exhaustive and reliable predictive capability in diagnosis and regression. 

3.2.3. Decision Trees  

Decision Trees provide clear and interpretable mechanisms in decision-making, a requirement for cases where 

actions have to be justified for the decision. Each tree node refers to a decision that can be based on certain 

sensor data, and the leaf nodes correlate with the best actions that can be performed, such as moving ahead or 

turning left.[18] The decision trees are mainly grown by Information Gain (IG) criteria calculated through: 
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IG(D, A) = Entropy(D) − ∑
|Dv|

|D|
× Entropy(Dv)      (5) 

Where: 

- Entropy(D) : a measure of dataset uncertainty. 

- Dv a subset of data for each attribute value v. 

In this framework, the decision tree analyzes the sensory data from the surrounding environment and generates 

an optimal path for the robot. In this sense, the decision tree enhances the understanding of how the robot would 

seek an effective solution to the gathered sensory data, which can include temperature, distance, or battery level. 

Next, it helps determine how the robot should act, say, by moving forward or stopping. It is based on optimal 

features for splitting the data, using Information Gain and Gini Index, etc., to ensure the data is accurately 

distributed for optimum separation of categories. These parameters are established by equations on how to 

compute different variance indicators from different categories concerning searching for the best data splitting 

points. 

Thus, the decision tree starts with the root node of the data, which will then be decided by taking a specific 

feature and dividing the data into sub-groups. Then, the procedure takes care of the whole internal nodes, where 

further decisions would be made based on the rest of the features until it reaches the leaf nodes, where the final 

classification or action will be picked from. For autonomous robotic systems, a decision tree is a perfect model 

where one needs to make decisions based on sensory data easy to interpret. 

One of the widely used techniques in data mining is systems that create classifiers. In data mining, classification 

algorithms are capable of handling a vast volume of information. It can be used to make assumptions regarding 

categorical class names, to classify knowledge based on training sets and class labels, and to classify newly 

obtainable data. Classification algorithms in machine learning contain several algorithms, and in this work, the 

paper focused on the decision tree algorithm in general. Fig.10 illustrates the structure of DT. 

 

Figure 10: Decision Tree Flowchart 

Decision trees are one of the powerful methods commonly used in various fields, such as machine learning, 

image processing, and the identification of patterns. DT is a successive model that unites a series of basic tests 

efficiently and cohesively, where a numeric feature is compared to a threshold value in each test. Figure 11 

presents an applied example of decision tree usage for predicting mission outcomes for robots based on 

environmental sensor inputs, almost in real time. At the root node, the framework would test the most critical 

sensor data, whose values were compared with their threshold limits: distance measurements, battery levels, and 

ambient temperature. Once decisions have been made at this root node, the tree splits into decision paths, each 
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representing different scenarios. For instance, if the battery level is below 49%, the tree considers this parameter 

as critical in deciding on mission feasibility and then on task selection. Distance measurements from proximity 

sensors less than or equal to threshold values will immediately determine subsequent navigation decisions, with 

choices such as obstacle avoidance or continuing forward being made. Leaf nodes would then display the 

designated values of mission success (+1), partial success, or mission failure (1). This interpretative decision-

making capability provides a structured methodology for the robot to effectively alter its actions autonomously 

in dynamic and complex environments. 

 

                           Figure 11: Decision Tree Example for Robot Mission Outcome Prediction. 

3.2.4. Data Description 

Based on the main data picked up by advanced sensors, the robots can direct their actions independently. It is 

important to base actions on the data coming from the sensors while monitoring the environment. The kind of 

data gathered for this purpose is often the distance between the robot and the object. Using proximity sensors, 

the data helps the robot decide whether to halt, avoid objects in the way, turn around, or continue going in its 

intended path. Temperature data is also another kind of data. The sensor in the robot checks the temperature of 

the surrounding environment, which reports the values in degrees Celsius. This information is very valuable 

when handling reprogramming and debugging if the robot gets too hot. The battery sensors give out battery 

percentage data in real-time, informing me about the remaining battery in the robot. It helps with sending the 

robot back to charge when necessary or with making energy-saving efforts during the activity. In addition, wheel 

speed sensors monitor the number of rotations the robot makes in minutes (RPM). Having the data from the 

sensor allows the robot to change its speed to fit different situations while performing a task. Information is 

collected live as the robot goes about its operations in a complicated environment. With this data, machine 

learning chooses the best response to any given state in the environment for the object. 

In the preparation of the data for feeding, some preprocessing steps are involved, such as normalization, noise 

reduction, and feature selection. Data normalization ensures that for every feature, the values are within the same 
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range, thereby aiding in training accuracy and computational speed; noise reduction takes off erroneous values 

and outliers that otherwise may be against the analysis; and feature selection gets down to only the relevant 

features, such as distance, temperature, and battery level, by excluding other irrelevant variables that could only 

interfere with the analysis. This data maintains the robot's ability to work autonomously in adapting to different 

environments and carrying out tasks effectively and accurately. 

 

                  Figure 12: Correlation matrix heatmap for decision making system in robots. 

3.2.5. Working structure 

The process starts by using data from the robot’s sensor to observe its surroundings and changes in actions as 

time goes on. Preprocessing is done to enhance the quality of the data so it can be used in decision-making 

analysis. The process of selecting models introduces various architectures, including single models such as 

ANN, SVM, and DT, and hybrid models that intend to boost how robots make decisions. 

When the model is chosen, it is trained on the data, considering dependencies over time and the robot’s contacts 

with what surrounds it. At this point, validation data is used to enhance the training and make the model perform 

better. 

The optimization process starts with the choice of an optimization method based on the properties of the robot 

environment and its decision-making tasks. After training, the models are fully tested on the testing dataset to 

measure model performance in real-world scenarios. 

Finally, a decision point is attained through a comparison of the performance of the 

models, choosing the one with the highest performance to ensure effective sound decision-making in robotics. 

Figure 13 shows the interdependent processes and decision-making routines that constitute the robotic decision-

making system, based on sensor data and robot interaction with the environment. 
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Figure 13: Workflow and model selection flowchart. 

 
4. Result Discussion 

4.1. Data Description 

We used this carefully engineered and curated dataset with various AI-driven classifiers to model and predict 

robotic mission outcomes. The dataset consists of 500 observations, of which 250 each represent samples of 

successful and failed missions. This helps maintain class balance and avoids biased training. Each record 

contains both intrinsic robotic sensory data and extrinsic environmental information. This dual perspective 

allowed us to look concretely at modeling decision-making behavior under uncertainty. 

Included features thus ranged from continuous sensory signals, such as Sensor Distance (cm), Battery Level (%), 

Wheel Speed (rpm), Wind Speed (km/h), Temperature (°C), and Robot Tilt (°), to higher-level categorical 

variables such as Terrain Type and Mission Type. Terrain Type was encoded as a single feature with three 

values (0 = Rough, 1 = Flat, 2 = Sandy) and Mission Type with three values (0 = Rescue, 1 = Delivery, 2 = 

Exploration). The continuous variables were standardized with a standard scaler to keep the features comparable 

and to facilitate convergence during training. 

The data were preprocessed to remove outliers and noise and processed for missing values with domain-sensitive 

imputation. Such a preprocessing provides a consistent platform for machine learning model learning. The 

design of the dataset is representative of real-world operating conditions in robotics and includes rich mixtures of 

mechanical, physical, and contextual parameters. Such a structure makes it conducive to building data-driven 

and interpretable decision systems. 

Table 2 shows how the robotic mission dataset is put together. The table shows that predictive modeling takes 

into account various inputs, among them Sensor Distance, Battery Level, Wheel Speed, Mission Type, and 

Outcome. The data was well-balanced and free of noise, so training a classifier would be accurate. 
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Table 2: The robotic mission dataset description  

Attribute Type Example Values Categorical 

Variable 

Sensor Distance (cm) Continuous -1 Terrain Type 

Battery Level (%) Continuous 90 

Wheel Speed (rpm) Continuous 120 

Wind Speed (km/h) Continuous 8.5 Mission Type 

Temperature (°C) Continuous 23.4 

Robot Tilt (°) Continuous -10 

Terrain Type Continuous Delivery Delivery 

Mission Type Continuous Flat Delivery 

 

4.2. Experimental Setup 

The experimental environment attempted to quantify and compare the three most important classification 

models' predictability, i.e., Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision 

Trees (DT). The formatted data were first divided into training (80%) and test (20%) subsets randomly for model 

generalizability. A preprocessing pipeline with feature scaling and categorical encoding was applied uniformly 

across all models to be fair. 

The ANN model architecture consisted of three hidden layers with 128, 64, and 32 neurons, respectively, each 

with ReLU activation. Early stopping conditions, along with a maximum of 3000 epochs of training, were 

implemented. The optimizer used was the Adam optimizer, and the cross-entropy loss function was used, with 

batch normalization being used to make the learning stable. This arrangement was used owing to its 

effectiveness in high-dimensional nonlinear classification problems.  

 

Figure 14: Workflow of the experimental setup detailing the processing steps, Model architectures, and 

evaluation Strategy for robotic mission classification. 
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The SVM model utilized a Radial Basis Function (RBF) kernel with regularization parameters C = 1.0 and 

gamma = 'scale'. SVM is known for its robustness in small to medium-sized datasets and its ability to find 

optimal separating hyperplanes between classes, particularly in non-linear settings. 

The Decision Tree classifier was implemented with a maximum depth of 5 to avoid overfitting and to provide 

interpretability. The Gini impurity metric was used to split nodes, and the model emphasized clarity of rule 

extraction over accuracy. 

All models were trained and tested on the same hardware and software environment to ensure comparability. 

Performance metrics were evaluated using accuracy, precision, recall, F1-score, and confusion matrices. 

4.3. Numerical Results and Analysis 

When trained and tested, the Artificial Neural Network model was far superior to the rest of the classifiers. The 

model generated a classification accuracy of 99% for the test set. The ANN model was not only superior in 

overall accuracy but also in terms of precision-recall balance. For the success class, the ANN had 100% 

precision and 98.5% recall, while for the failure class, it achieved 97.2% precision and 100% recall. These are 

extremely high values and show that the ANN model successfully picked up linear as well as non-linear patterns 

in the feature space. The Support Vector Machine model also achieved 93% accuracy. Its precision and recall 

values were more than 90% in both classes.  

The SVM model illustrated a clear ability to separate operating patterns from environmental factors that were 

related to success or failure. It is most appropriate for boundary-based learning, and hence it is perfect for high-

risk robotic tasks where the reduction of false positives is paramount. 

The Decision Tree model, while being less accurate overall at 76%, provided useful interpretability. It was 

observed that the DT classifier overpredicted the failure class with good recall (88.6%) but poor precision 

(60.8%). This is common in models tuned for binary thresholds without regularization. 

 

Figure 15: A comparison of the ml models' performance.  

These results tell or affirm, surely, the supremacy of neural architectures like ANN in capturing complex robot-

environment interactions. Despite SVM standing fine at the balance point between accuracy and computational 

cost, the DT remains suitable for purposes of rule-based inference and for depicting decision logic visually. 

Also, the comparison points to the utmost importance of proper feature engineering and scaling in achieving 

good classification. 
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4.4. Comparison Between Best and Worst Models 

It was found that ANN achieved better results than SVM and DT. By using complex architecture, the Rover 

could detect how important things, such as the Rover's speed, the state of the battery, and the terrain, influenced 

the mission. The ability of the model to generalize is clear from the fact that it can nearly perfectly classify 

missions as either successful or unsuccessful. 

 However, the outcome of this work suggests that the Decision Tree performed the least successfully. Due to 

dividing the tree only once and not much, it could not find more complex patterns in the data. However, since it 

is easy to understand and safety systems, readability matters more than the ability to make predictions. 

The SVM model provided a balanced prediction that was effective and interpretable. Compared to ANN, SVM 

does not require much tuning or excessive computational power. It also worked well using the normalized 

feature set and exhibited resistance to overfitting. SVM's kernel trick enabled it to project data into higher 

dimensions where data separation was simpler. 

In general, the ANN model ranked top among the three to employ in real-time robot mission decisions due to its 

high accuracy as well as the ability to learn. However, where quicker inference or explainable reasoning is 

essential, the SVM or DT models may remain practically applicable, dependent on system constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Grayscale workflow illustrating the complete classification pipeline from data preparation 

to model comparison in robotic mission outcome prediction. 

 

5. Conclusion 

Decision-making systems in robotics constitute the very essence of providing autonomy and flexibility in the 

arena of complex and dynamic settings. The study has, therefore, expanded upon its basic scope to cover the 
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design and development of an intelligent model based on higher AI techniques, namely ANN, SVM, and DT, to 

enable robotic systems to make decisions with multiple data points and changing environmental conditions taken 

into consideration. The simulation results indicated that the ANN model showed excellent accuracy (99%), 

indicating its excellent ability to manage non-linear and complex data, while the SVM and DT models were 

noted for providing logically sound and transparent decision explanations, hence contributing to a compromise 

between performance and precision. 

On the other hand, despite the clear superiority of the ANN model, many areas are ripe for hybrid artificial 

intelligence techniques, where the learning strength of ANN could be coupled with the classification strengths of 

SVM and the transparency of DT to pave the way for future applications in critical areas such as disaster 

response and recovery, hazardous material handling, and medical robotics. 

This study is a critical step toward developing more autonomous and adaptive robots capable of operating in 

diverse environments. Yet, there remains a big hurdle to deploying such systems in real-time at a large level, 

especially in high-stakes environments. Therefore, the study proposes continued exploration of hybrid models 

and their deployment in real-world scenarios with an emphasis on the continued learning and self-improvement 

of robots from real-world experiences. This research also opens up avenues for more studies on artificial 

intelligence applications in industrial robotics, health, and security systems, resulting in the development of new 

solutions for complex societal problems. 
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