
East Journal of Computer Science

Copyright: ©2025 The author(s). Published by East Publication and Technology. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0 International License. which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

Volume 1, Issue 2

Publisher: East Publication & Technology
DOI: https://doi.org/10.63496/ejcs.Vol1.Iss2.79

ISSN: 3079-9406

Optimizing Software Quality: Integrating Test Case

Prioritization, Defect Prediction, and Resource Allocation

Strategies

Abdallh Mostafa Mohamed Mohamed Menshawy 1, Mohammad Nasar*2

1Student, Computing and Informatics Department, Mazoon College, Muscat, Oman, nasar31786@gmail.com.
2Computing and Informatics Department, Mazoon College, Muscat, Oman, 2219564@mazcol.edu.om.

*Corresponding Author.

Received: 29/03/2025, Revised: 30/03/2025, Accepted: 07/04/2028, Published: 08/04/2025

Abstract:

Software quality assurance is essential for reliable and effective systems, especially in critical fields like healthcare and

autonomous vehicles. Yet, limited resources, slow fault detection, and the growing complexity of software designs—such as

modular and distributed setups—create tough challenges. This paper explores progress in four key areas: requirement-based

test case prioritization, software defect prediction, reliability checks for component-based systems, and resource allocation

strategies. We reviewed 35 studies from 1992 to 2021, comparing older methods with newer ones using machine learning and

deep learning. Our work shows that smart prioritization catches 30% more faults early, defect prediction models hit precision

scores of 0.88–0.92, and resource allocation cuts testing effort by 25% without losing coverage. Still, issues like scaling up,

real-world testing, and linking these methods together need more work. This study points out these gaps and suggests a

combined approach to bring prioritization, prediction, and allocation into one system, aiming to improve software quality for

today’s demanding applications.

Keywords: Software Testing, Test Case Prioritization, Defect Prediction, Reliability, Resource Allocation, Machine

Learning, Deep Learning.

1. Introduction

Software has become the backbone of critical industries like healthcare, aerospace, and transportation, where even

small glitches can lead to big losses or safety risks [1]. Old-school testing methods, built on manual steps and basic

benchmarks, can’t keep up with today’s software—huge, modular, and constantly changing [2]. With systems now

juggling millions of lines of code and regular updates, developers face a tough job ensuring everything works right

[3]. To tackle this, new ideas have popped up: test case prioritization to spot faults fast [4], defect prediction with

machine learning (ML) and deep learning (DL) to catch problems early [5], reliability checks for component-based

systems (CBS) to confirm they hold up [6], and resource allocation to make testing smarter under tight limits [7].

Test case prioritization picks out the most important tests first, a must for quick-turnaround setups like agile or

continuous integration [8]. Defect prediction uses clever tools to find weak spots before they break, cutting the

need for endless testing [9], [10]. Reliability work makes sure CBS—where parts work together—stays solid

despite tricky interactions [11]. Resource allocation, often guided by techniques like genetic algorithms, spreads

effort where it counts most [12]. All these pieces aim to keep software trustworthy in the real world [13].

This paper pulls together 35 studies from 1992 to 2021, from folks like Dahiya and Solanki [4], [8], Yadav and

Kishan [6], [11], Nasar and Johri [7], [12], and Karunanithi [14]. We set out to: (1) check what’s working now in

these areas [15], (2) weigh old ways against new tricks [16], and (3) map out where research should head next to

tie these together [17]. By connecting these dots, we hope to push software quality forward, matching the needs

of a world that’s more digital and linked than ever [18].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

East Journal of Computer Science

17 © East Journal of Computer Science

2. Related Work

This review covers 35 studies from 1992 to 2021, exploring test case prioritization, reliability prediction, defect

prediction, and resource allocation. Early efforts introduced foundational models [14], while recent works

leverage ML and DL [5], [10]. Dahiya and Solanki tackle prioritization and testing issues [4], [8], Yadav and

Kishan focus on CBS reliability [6], [11], Nasar and Johri address resource allocation [7], [12], and defect

prediction spans statistical to neural network methods [13], [19].

2.1 Test Case Prioritization and Testing Challenges

Prioritization optimizes testing by targeting critical faults first [8]. Dahiya and Solanki explore requirement-based

methods, linking test cases to key functions for early fault detection [4]. Their review of regression testing sorts

techniques into coverage-based, fault-history-based, and hybrid types [8]. Coverage-based approaches cover

extensive code but demand heavy computation [20], while fault-history methods use past data efficiently, though

they weaken with code changes [21]. They note challenges like incomplete requirements and test environment

mismatches [1], proposing risk-based testing to prioritize severe faults, vital for safety-critical software [1], [22].

2.2 Software Reliability in Component-Based Systems

CBS reliability hinges on component interactions [6]. Yadav and Kishan define it as the likelihood of failure-free

operation, using models like McCall’s to assess quality [23]. Traditional models falter with dynamic dependencies

[11], prompting neural network solutions with high accuracy [24]. These require significant data and resources

[25]. Karunanithi et al.’s early connectionist models [14] evolved into advanced frameworks like evolutionary

networks [26], improving CBS reliability prediction [27].

2.3 Software Defect Prediction

Defect prediction has shifted from manual checks to ML and DL [5]. Al Qasem and Akour use DL for precise

fault detection [5], while Qiao et al. analyze code metrics with neural networks, outperforming older ML [10].

Ensemble methods [13] and LASSO-SVM [19] handle data imbalance [28], building on early SVM and ARIMA

models [29], [30]. These tools excel but need large datasets [16].

2.4 Resource Allocation in Software Testing

Resource allocation balances effort and quality [7]. Nasar and Johri use genetic algorithms to cut testing effort

while maintaining coverage [12], effective in distributed systems [31]. Dynamic strategies adapt to project needs

[17], and early forecasting models enhance scalability [32], though complexity limits small-team use [18].

While all four approaches aim to improve software quality, they target different stages of testing. Test case

prioritization organizes tests for efficiency, defect prediction identifies vulnerable code areas, reliability models

assess system stability, and resource allocation optimizes testing efforts. Traditional methods work sufficiently for

small projects, but machine learning techniques prove more accurate for complex systems—though they require

more data and computing power. Together, these approaches could be combined into a unified framework for

stronger software quality assurance.

3. Methodology

This study employs a systematic literature review (SLR) to evaluate 35 peer-reviewed articles published between

1992 and 2021, drawn from reputable databases including IEEE Xplore, SpringerLink, Scopus, and Elsevier

ScienceDirect [1], [2]. The purpose is to analyze progress in four critical areas of software quality assurance:

requirement-based test case prioritization, reliability prediction for component-based systems (CBS), software

defect prediction, and resource allocation strategies. The review follows a structured SLR framework based on

established software engineering research practices [3], ensuring a thorough and impartial assessment.

Study selection relied on precise criteria, limiting inclusion to peer-reviewed journal articles and conference papers

offering substantial empirical or theoretical insights into test case prioritization [4], [8], CBS reliability [6]–[11],

defect prediction [5], [13]–[15], and resource allocation [7], [12], [16]–[22]. Non-peer-reviewed works, non-

East Journal of Computer Science

18 © East Journal of Computer Science

English publications, or papers lacking relevance were excluded [23]. The search process began with keywords

such as “test case prioritization,” “software reliability,” “defect prediction,” and “resource allocation,” combined

with terms like “machine learning” to encompass both conventional and advanced methods [24]. This yielded 150

articles, which were refined through a two-step process: title and abstract screening reduced the set to 75, followed

by full-text analysis to select the final 35, spanning contexts from open-source to industrial applications [25], [26].

Data were extracted focusing on three key metrics: fault detection rate (prioritization), prediction accuracy

(reliability and defect prediction), and resource efficiency (allocation) [27]. Both quantitative results, such as

accuracy percentages, and qualitative observations, like scalability challenges, were documented [28]. The

analysis compared traditional approaches—e.g., coverage-based prioritization [8]—with modern techniques, such

as deep learning [3] and genetic algorithms [2], using numerical data and thematic evaluation [29]. Findings are

organized in Table 1 (study domains) and Table 2 (method comparisons) [30]. Validation involved cross-

referencing with existing reviews [31] and verifying primary sources [32], providing a reliable foundation for the

subsequent findings.

4. Analysis and Findings

Our analysis compares traditional and intelligent methods across the four domains, detailed in Tables III and

IV.

4.1 Test Case Prioritization

Risk-based prioritization boosts fault detection by 30% over random methods [1], with coverage-based

techniques achieving 85% code coverage but needing more resources [8].

4.2 Reliability Prediction

Neural network models for CBS hit 85–90% accuracy, surpassing traditional metrics [9], building on early

efforts [14].

4.3 Defect Prediction

DL models achieve 0.88–0.92 precision [10], with LASSO-SVM improving recall by 15–20% on skewed data

[19].

4.4 Resource Allocation

Genetic algorithms reduce effort by 25% [12], with dynamic methods adding 10–15% efficiency [17].

Table 1: Study Categories

Domain References Focus

Prioritization [1], [4], [8] Fault detection order

Reliability [6]–[11], [14] CBS reliability

Defect Prediction [5], [13]–[15] Fault prediction

Resource Allocation [7], [12], [16]–[22] Effort optimization

Table 2: Method Comparison

Method Type Example Advantage Drawback

Traditional Coverage [8] Broad coverage High resource use

Intelligent DL [10], GA [12] High accuracy Data needs

Table 3: Key Metrics

Domain Metric Value Studies

Prioritization Fault Detection Gain 30% [1], [4]

Reliability Accuracy 85–90% [9], [14]

Defect Prediction Precision 0.88–0.92 [10], [19]

Resource Allocation Effort Reduction 25% [12], [17]

East Journal of Computer Science

19 © East Journal of Computer Science

Table 4: Insights

Domain Strength Challenge

Prioritization Early fault catch Scalability

Reliability High precision Data reliance

Defect Prediction Predictive power Dataset quality

Resource Allocation Efficiency Complexity

5. Discussion

Our findings reveal that modern methods significantly improve software quality, though they bring challenges

that demand practical solutions [1], [2]. Risk-based test case prioritization excels at detecting faults quickly, a

clear advantage for fast-paced environments like agile and DevOps [4]. By targeting high-risk areas first, it

proves invaluable for systems where errors could lead to serious consequences [8]. However, scaling it to large

projects remains difficult—coverage-based techniques require substantial computational resources [5].

Developing adaptable prioritization rules that adjust to project size could maintain efficiency without excessive

demands [12]. Simpler heuristic approaches might also ease the burden for complex systems, offering a

workable compromise [18].

Reliability prediction for component-based systems (CBS) benefits greatly from neural networks, which deliver

impressive accuracy [9]. These models adeptly manage intricate component interactions, surpassing traditional

statistical methods [11]. Yet, their dependence on extensive data and advanced hardware limits their reach,

particularly for smaller teams [14]. Incorporating real-time data from operational software could reduce this

reliance, sharpening predictions with less upfront investment [25]. Blending these sophisticated tools with basic

statistical techniques might broaden access, drawing on proven earlier concepts [21].

Deep learning elevates defect prediction, achieving precision far beyond standard machine learning [3].

Techniques like LASSO-SVM and under-sampling address data imbalances effectively, crucial for safety-critical

software [19], [22]. The drawback lies in securing sufficient high-quality data, especially for new or proprietary

projects [15]. Generating synthetic data or adapting models from existing datasets could bridge this gap [23].

Adding domain-specific knowledge about common defects might further refine accuracy with minimal extra

effort [26].

Resource allocation thrives with genetic algorithms, optimizing testing across diverse systems [2]. They perform

exceptionally well in distributed and modular setups, and dynamic adjustments enhance their flexibility as needs

shift [7], [16]. However, their complexity can deter smaller teams lacking expertise [20]. Streamlined tools or

guides could make them more accessible [24]. Integrating allocation with prioritization and defect prediction

could sharpen focus on critical areas, maximizing testing efficiency [17].

The toughest challenge is combining these approaches into a cohesive system [31]. Imagine a framework where

prioritization selects key tests, deep learning identifies flaws, genetic algorithms distribute effort, and reliability

checks ensure stability [32]. This requires interoperable tools to replace today’s fragmented efforts [33]. Real-

world trials in industry settings—not just controlled experiments—will test its viability and highlight needed

adjustments [29]. Successfully addressing these issues could elevate software quality assurance, preparing it for

the complexities of modern systems [28]

6. Conclusion

This review of 35 studies from 1992 to 2021 demonstrates how innovative methods are reshaping software quality.

Risk-based prioritization boosts fault detection by 30%, a vital edge for tight schedules where delays aren’t an

option. Deep learning drives defect prediction to precision levels of 0.88–0.92, empowering teams to address issues

before they escalate. Reliability assessments for component-based systems achieve 85–90% accuracy, reinforcing

confidence in today’s modular designs. Genetic algorithms cut testing effort by 25%, delivering efficiency without

compromising thoroughness—a lifeline for projects stretched thin on time or budget.

East Journal of Computer Science

20 © East Journal of Computer Science

Progress aside, obstacles persist. Scaling prioritization and resource allocation for massive systems taxes available

resources, often beyond what smaller teams can manage. Reliability and defect prediction falter without robust

datasets, a hurdle for unique or early-stage projects. Most critically, these methods operate in isolation rather than

as a unified front. A proposed solution integrates them: prioritization to target tests, prediction to pinpoint defects,

allocation to optimize resources, and reliability to verify performance. Achieving this demands seamless tools,

rigorous testing in actual industry conditions—not just labs—and simplified approaches to suit diverse teams.

Overcoming these barriers could align software quality with the intense demands of modern technology, ensuring

dependable systems in an ever-connected world.

References

[1] O. Dahiya, K. Solanki, and A. Dhankhar, “Risk-based testing: Identifying, assessing, mitigating & managing

risks efficiently in software testing,” Int. J. Adv. Res. Eng. Technol., vol. 11, pp. 192–203, 2020.

[2] P. Johri, Md. Nasar, and U. Chanda, “A genetic algorithm approach for optimal allocation of software testing

effort,” Int. J. Comput. Appl., vol. 68, no. 5, pp. 21–25, Apr. 2013.

[3] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol.

385, pp. 100–110, 2020.

[4] O. Dahiya and K. Solanki, “Prevailing standards in requirement-based test case prioritization: An overview,”

in ICT Analysis and Applications, 2021, pp. 467–474.

[5] O. Al Qasem and M. Akour, “Software fault prediction using deep learning algorithms,” Int. J. Open Source

Softw. Process., vol. 10, pp. 1–19, 2019.

[6] S. Yadav and B. Kishan, “Reliability of component-based systems—A review,” Int. J. Adv. Trends Comput.

Sci. Eng., vol. 8, pp. 293–299, 2019.

[7] Md. Nasar and P. Johri, “Testing resource allocation for modular software using genetic algorithm,” Int. J.

New Comput. Archit. Appl., vol. 5, no. 1, pp. 29–38, 2015.

[8] O. Dahiya and K. Solanki, “A systematic literature study of regression test case prioritization approaches,” Int.

J. Eng. Technol., vol. 7, pp. 2184–2191, 2018.

[9] S. Yadav and B. Kishan, “Component-based software system using computational intelligence technique for

reliability prediction,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, pp. 3708–3721, 2020.

[10] S. Yadav and B. Kishan, “Analysis and assessment of existing software quality models to predict the reliability

of component-based software,” Int. J. Emerging Trends Eng. Res., vol. 8, pp. 2824–2840, 2020.

[11] S. Yadav and B. Kishan, “Assessments of computational intelligence techniques for predicting reliability of

component based software parameter and design issues,” Int. J. Adv. Res. Eng. Technol., vol. 11, pp. 565–584,

2020.

[12] Md. Nasar and P. Johri, “Testing resource allocation for fault detection process,” in Proc. First Int. Conf.

Smart Trends Inf. Technol. Comput. Commun. (SmartCom-2016), Springer CCIS, Aug. 2016.

[13] T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect prediction based on classifiers ensemble,” J. Inf.

Comput. Sci., vol. 8, pp. 4241–4254, 2011.

[14] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software reliability using connectionist

models,” IEEE Trans. Softw. Eng., vol. 18, p. 563, 1992.

[15] B. S. Deshpande, B. Kumar, and A. Kumar, “Assessment of software reliability by object oriented metrics

using machine learning techniques,” Int. J. Grid Distrib. Comput., vol. 14, pp. 01–10, 2021.

[16] Md. Nasar, P. Johri, and U. Chanda, “Dynamic effort allocation problem using genetic algorithm approach,”

Int. J. Mod. Educ. Comput. Sci., vol. 6, no. 6, pp. 46–52, 2014.

East Journal of Computer Science

21 © East Journal of Computer Science

[17] Md. Nasar, P. Johri, and U. Chanda, “A differential evolution approach for software testing effort allocation,”

J. Ind. Intell. Inf., vol. 1, no. 2, pp. 111–115, 2013.

[18] P. Johri, Md. Nasar, and S. Das, “Open source software reliability growth models for distributed environment

based on component-specific testing-efforts,” in Proc. Second Int. Conf. Inf. Commun. Technol. Competitive

Strategies (ICTCS-2016), ACM ICPS, Mar. 2016.

[19] K. Wang, L. Liu, C. Yuan, and Z. Wang, “Software defect prediction model based on LASSO–SVM,” Neural

Comput. Appl., pp. 8249–8259, 2021.

[20] S. Yadav and B. Kishan, “Assessment of software quality models to measure the effectiveness of software

quality parameters for component based software (CBS),” J. Appl. Sci. Comput., vol. 6, pp. 2751–2756, 2019.

[21] Md. Nasar and P. Johri, “Testing and debugging resource allocation for fault detection and removal process,”

Int. J. New Comput. Archit. Appl., vol. 4, no. 4, pp. 193–200, 2014.

[22] K. N. Rao and C. S. Reddy, “A novel under sampling strategy for efficient software defect analysis of skewed

distributed data,” Evolving Syst., vol. 11, pp. 119–131, 2020.

[23] C. Shan, H. Zhu, C. Hu, J. Cui, and J. Xue, “Software defect prediction model based on improved LLE-

SVM,” in Proc. 4th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT), vol. 1, 2015, pp. 530–535.

[24] Md. Nasar, P. Johri, and U. Chanda, “Resource allocation policies for fault detection and removal process,”

Int. J. Mod. Educ. Comput. Sci., vol. 6, no. 11, pp. 52–57, 2014.

[25] S. L. Ho, M. Xie, and T. N. Goh, “A study of the connectionist models for software reliability prediction,”

Comput. Math. Appl., vol. 46, pp. 1037–1045, 2003.

[26] C. Jin and S. W. Jin, “Prediction approach of software fault-proneness based on hybrid artificial neural

network and quantum particle swarm optimization,” Appl. Soft Comput., vol. 35, pp. 717–725, 2015.

[27] P. F. Pai and W. C. Hong, “Software reliability forecasting by support vector machines with simulated

annealing algorithms,” J. Syst. Softw., vol. 79, pp. 747–755, 2006.

[28] J. H. Lo, “A study of applying ARIMA and SVM model to software reliability prediction,” in Proc. Int. Conf.

Uncertainty Reasoning Knowl. Eng., vol. 1, 2011, pp. 141–144.

[29] H. Li, M. Zeng, M. Lu, X. Hu, and Z. Li, “Adaboosting-based dynamic weighted combination of software

reliability growth models,” Qual. Rel. Eng. Int., vol. 28, pp. 67–84, 2012.

[30] L. Tian and A. Noore, “Evolutionary neural network modeling for software cumulative failure time

prediction,” Rel. Eng. Syst. Safety, vol. 87, pp. 45–51, 2005.

[31] Q. P. Hu, M. Xie, S. H. Ng, and G. Levitin, “Robust recurrent neural network modeling for software fault

detection and correction prediction,” Rel. Eng. Syst. Safety, vol. 92, pp. 332–340, 2007.

[32] P. Roy, G. S. Mahapatra, and K. N. Dey, “Neuro-genetic approach on logistic model based software reliability

prediction,” Expert Syst. Appl., vol. 42, pp. 4709–4718, 2015.

[33] E. O. Costa, G. A. de Souza, A. T. R. Pozo, and S. R. Vergilio, “Exploring genetic programming and boosting

techniques to model software reliability,” IEEE Trans. Rel., vol. 56, pp. 422–434, 2007.

