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Abstract: 

Coverless image steganography (CIS) enhances secrecy by avoiding direct modifications to existing images, unlike traditional 

methods that embed data by altering image content. However, many existing approaches struggle to balance payload 

capacity, visual quality, and resistance to steganalysis. This paper introduces StyleGAN2-Stego, a generative steganography 

framework that conceals secret messages in the latent space of a pre-trained StyleGAN2-ADA generator. The framework 

consists of an encoder that transforms a binary message into a latent perturbation vector, a fixed generator that synthesizes 

realistic stego images from the modified latent space, and a decoder that reconstructs the original message from the generated 

image. The encoder and decoder are trained jointly, while the generator remains frozen to preserve visual fidelity. 

Experimental results show that StyleGAN2-Stego achieves a payload of 0.5 bits per pixel, a message recovery accuracy of 

98.72%, and strong resistance to detection by advanced steganalysis tools such as Xu-Net and Ye-Net. It also produces high-

quality images, with a Fréchet Inception Distance (FID) of 6.78. However, further evaluation under real-world image 

distortions such as compression, resizing, and scaling is required to validate robustness in practical communication 

scenarios. These findings highlight the potential of StyleGAN2-Stego for real-world applications such as secure digital 

communication, copyright protection, and digital watermarking. 

Keywords: Coverless Image Steganography, Steganalysis, Generative Steganography, Deep Learning, StyleGAN2-

ADA, Latent Space Encoding, Secure Communication. 

1. Introduction 

The rapid expansion of digital communication has transformed how information is created, shared, and stored. 

Alongside these advances, the need for protecting sensitive data has become more critical than ever. 

Steganography, the practice of concealing secret information within ordinary media, has emerged as an important 

technique for enabling covert communication without arousing suspicion [1], [2]. Unlike cryptography [3], which 

protects the content of a message but leaves its existence visible, steganography hides the very presence of the 

message, making detection substantially more difficult. It can be adapted to various forms of digital media, 

encompassing images [4-8], videos [9], audio [10], and textual information [11]. Digital images are widely used 

in steganography. They are common in daily communication and can carry large amounts of hidden data. The 

image that contains the embedded secret data is referred to as a stego image. Techniques such as steganalysis [12-

14] are employed to detect the presence of hidden information in such images. 

Traditional image steganography methods often rely on modifying certain components of an existing image, such 

as the least significant bits (LSBs) of pixel values [15] or texture-rich areas [16]. While these approaches can 

embed large amounts of information, they inevitably introduce subtle changes to the cover image that may be 

detectable by modern steganalysis tools. In particular, deep learning–based steganalyzers such as Xu-Net [17] and 

Ye-Net [18] have demonstrated a high ability to detect even minor alterations, reducing the security of 

conventional embedding techniques. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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To overcome these limitations, coverless image steganography (CIS), and in particular generative steganography 

(GS), has gained significant attention. Rather than embedding secret data into a pre-existing cover, generative 

methods directly generate the stego image from the secret message using generative models [19]. Since there is 

Early generative steganography approaches, such as those based on DCGANs [20] or WGAN-GP [21], 

demonstrated the potential of using deep generative models to produce stego images without modifying an existing 

cover. However, despite these promising directions, they exhibited several critical limitations. In particular, 

DCGAN-based methods often suffered from unstable training and mode collapse, which restricted their ability to 

generate diverse and consistent images. WGAN-GP introduced improvements in training stability, but the resulting 

images were typically limited to low resolutions, which constrained their practical applicability. Moreover, both 

approaches struggled to achieve reliable message recovery at higher payloads, reducing their usefulness for robust 

communication. These limitations highlighted the need for more stable and controllable generative models. 

More recent studies incorporated attention mechanisms [22] and disentanglement strategies [23] to improve image 

quality and robustness, while methods such as SSteGAN [24] and sampling-based frameworks [25] advanced 

flexibility in embedding. Building on this progression, researchers explored adversarial training for steganography 

without embedding [26], message-conditioned sampling [28], and decoupled generator–decoder designs [29]. 

Most recently, diffusion-based methods [30] achieved state-of-the-art image quality but introduced higher 

computational costs and limited stability at increased payloads. 

In this work, we introduce StyleGAN2-Stego, a StyleGAN2-ADA-based coverless image steganography 

framework that embeds information into the latent space of a pre-trained generator. Instead of altering image 

pixels, the proposed method modifies the generator’s internal latent representation by adding a small, learned 

adjustment derived from the secret message. To the best of our knowledge, this is the first framework that leverages 

a fixed StyleGAN2-ADA generator for latent-space steganography, ensuring stable training and improved fidelity 

compared to retrainable diffusion or GAN-based approaches. 

We evaluate StyleGAN2-Stego with a payload capacity of 0.5 bits per pixel (bpp) and assess its robustness using 

two widely used steganalysis networks, Xu-Net and Ye-Net. The framework achieves strong undetectability, with 

detection error rates close to random guessing, and produces visually realistic images, confirmed by a Fréchet 

Inception Distance (FID) of 6.78. These results highlight its potential as an effective solution for secure image-

based communication using deep generative models. 

The rest of this paper is organized as follows: Section 2 reviews related work in generative and coverless image 

steganography. Section 3 describes the architecture and methodology of StyleGAN2-Stego. Section 4 presents the 

experimental setup, results, and analysis. Finally, Section 5 concludes the study and discusses potential future 

work. 

2. Related Work 

Early steganography methods primarily relied on directly modifying existing cover images, such as altering pixel 

values or embedding data in specific image regions. While these approaches were effective to some extent, they 

are increasingly vulnerable to modern detection techniques. To address this limitation, generative steganography 

(GS) has emerged as a compelling alternative. Rather than embedding messages into pre-existing images, GS 

techniques generate new images from scratch with the secret message inherently encoded. Since there is no original 

cover image for comparison, detecting hidden data becomes substantially more challenging. 

One of the foundational works in this space was presented by Hu et al. [20] in 2018, who employed a Deep 

Convolutional Generative Adversarial Network (DCGAN) to produce stego images. In their system, the secret 

message was embedded into the noise vector fed to the generator. This innovation removed the need for a separate 

cover image and introduced the concept of message-conditioned image generation. However, the generated visuals 

were often of low quality, and decoding reliability varied significantly based on input complexity. Furthermore, 

DCGANs at the time were prone to unstable training and lacked fine-grained control, limiting real-world 

applicability. 
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In the same year, Wang et al. [24] (2018) introduced SSteGAN, a self-learning generative steganography model. 

SSteGAN took both noise and secret data as inputs and trained the generator and decoder jointly without manual 

supervision. The model treated steganography as a learning task, allowing it to discover how to hide and recover 

information automatically. It achieved a balance between visual quality and decoding reliability, although training 

stability and parameter tuning added complexity. 

Building on these foundations, Li et al. [21] in 2020 proposed a system based on Wasserstein GANs with Gradient 

Penalty (WGAN-GP). This model improved convergence and addressed mode collapse, producing more consistent 

results. The use of the Wasserstein loss function, coupled with gradient penalties, facilitated smoother training 

dynamics. While image quality improved compared to DCGAN-based methods, the model still required careful 

embedding strategies, and decoding accuracy remained sensitive to input variations and noise. 

A different line of advancement was proposed by Yu et al. [22] in 2021, who introduced SAGAN-Steg, a 

steganography framework that avoided traditional embedding by leveraging attention-enhanced GANs. Their 

architecture included a generator that synthesized images conditioned on both noise and secret data, and an 

extractor that was responsible for retrieving the embedded message. To improve the model's focus on meaningful 

latent features, they incorporated attention mechanisms into both components. The authors also introduced a soft-

margin adversarial loss, which enhanced robustness against noise and led to more stable training. The resulting 

system produced more realistic images and achieved high message extraction accuracy, even under slight 

distortions. 

A notable contribution came from Liu et al. [23] in 2022, who proposed IDEAS, an Image Disentanglement 

Autoencoder for Steganography designed to hide information without explicit embedding. Rather than injecting 

secret data directly into image pixels or noise vectors, their method disentangled the generative process into two 

separate latent spaces: one responsible for visual content and the other for the encoded message. This design 

enabled the model to implicitly embed information into high-level image features, improving imperceptibility and 

reducing visible artifacts. However, maintaining a strict separation between message and content representation 

posed training challenges, particularly in preserving image quality during message reconstruction. 

Zhang et al. [28] in 2024 introduced a message-conditioned generative steganography framework that eliminates 

the need for traditional embedding. In their approach, the secret message is mapped into a continuous latent noise 

vector through a defined mapping function with a carrier component. This vector is then passed to the generator, 

which synthesizes a realistic image that inherently carries the hidden information. On the receiving side, extractor 

networks recover a secret tensor from the generated image, and an inverse mapping reconstructs the original 

message. By embedding the payload at the earliest stage of generation, this design avoided pixel-level 

modifications and improved imperceptibility while maintaining flexibility in message recovery. 

In the same year, Ren and Wu [29] (2024) introduced JoCS, a robust joint coverless image steganography 

framework based on two independent modules: a generator and a decoder. Unlike prior models that train these 

components together, JoCS kept them separate. The generator created visually convincing stego images 

conditioned on the secret message, while the decoder independently learned to recover the embedded data. This 

decoupled design offered greater flexibility, as the decoder could be retrained separately for different message 

types without modifying the generator. A feedback mechanism was also incorporated to adjust generation based 

on recovery performance. Although this improved robustness against noise and data loss, the lack of joint training 

sometimes resulted in weaker coordination between image realism and message recovery. 

Most recently, Kim et al. [30] in 2025 proposed Diffusion-Stego, a training-free steganography framework that 

leveraged the powerful generative capabilities of diffusion models. Instead of training a custom model, they 

utilized a pre-trained diffusion model and introduced a method called message projection. This technique projected 

the secret message onto the latent noise space of the diffusion model, meaning the message was encoded by slightly 

altering the random noise input used to generate the image. These subtle modifications guided the diffusion 

sampling process so that the final image inherently contained the hidden information. Since no pixel-level 

modification occurred, the resulting stego images were visually indistinguishable from naturally generated 

samples. This approach was highly efficient, as it avoided retraining and fully exploited the image quality 

achievable with diffusion models. However, its reliability depended heavily on the precision of the projection 
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mechanism, and decoding accuracy could drop when images were subjected to compression, resizing, or other 

distortions. 

Collectively, these studies highlight the field’s ongoing shift toward more secure, high-capacity, and imperceptible 

steganographic techniques. The progression of research from DCGAN-based methods in 2018 to diffusion-based 

approaches in 2025 has paved the way for increasingly advanced and secure systems. Building on these prior 

contributions, our proposed framework, StyleGAN2-Stego, introduces a refined approach that operates at the latent 

level of a pre-trained StyleGAN2-ADA generator. Instead of altering image pixels directly, it embeds secret 

messages by subtly modifying the generator’s internal representation before image synthesis. This controlled 

adjustment enables the model to produce natural-looking images that conceal data effectively. By leveraging the 

capabilities of modern generative models, the method achieves high data embedding rates, strong imperceptibility, 

and robust resilience against deep learning-based steganalysis techniques. 

3. The Proposed Framework 

3.1 Overview of the Proposed Framework 

The StyleGAN2-Stego framework introduces a coverless image steganography technique that embeds secret 

messages by applying small, calculated changes to the latent input of a generative model. Specifically, it adds a 

latent perturbation vector Δw derived from the secret message m to the latent vector w that is passed into a pre-

trained StyleGAN2-ADA generator G. This subtle modification allows the model to produce photorealistic stego 

images Iₛ that visually resemble normal outputs while securely encoding the hidden data in a way that is difficult 

for modern steganalysis tools to detect. The proposed framework is built around three key components, each 

playing a distinct role in the message embedding and extraction process: 

1. Encoder E: Transforms the binary representation of a secret message b into a latent perturbation vector. 

This vector subtly adjusts the generator’s latent space to encode the message without altering visible image 

content. 

2. Generator G: Utilizes a fixed, pre-trained StyleGAN2-ADA model that synthesizes the final stego image. 

It receives a modified latent vector w′, which is the result of adding the perturbation vector to the original 

latent input. 

3. Decoder D: Processes the generated stego image to accurately recover the embedded message from the 

high-level features introduced during generation. 

This separation of responsibilities ensures that the generator retains its image quality, while the encoder E and 

decoder D learn to perform accurate and robust message embedding and extraction. Figure 1 illustrates the message 

encoding, image generation, and decoding process. 
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Figure 1: Overall architecture of the StyleGAN2-Stego framework. The encoder maps the binary message into a 

latent perturbation vector, which is added to the StyleGAN2-ADA latent representation. The generator 

synthesizes a stego image, and the decoder reconstructs the embedded message. 

3.2 Message and Image Preprocessing 

The system processes two input types: a secret message m and the corresponding generated stego image Iₛ. 

3.2.1 Message Preprocessing 

To ensure compatibility with the encoder E, the secret message first goes through a preprocessing phase. The 

message is either truncated or padded with null characters to reach a fixed length of 4096 characters. This 

guarantees a uniform input size regardless of the original message length. The standardized message is then 

translated into a binary representation using a text-to-bits function, where each character becomes an 8-bit binary 

representation. The resulting binary array is expressed as: 

𝑏 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝑚),  𝑏 ∈ {0,1}𝑛 (1) 

where 𝑛 represents the total number of bits in the encoded secret message. The resulting bit sequence is used as 

input for the encoder, ensuring both consistent formatting and the bit-level precision needed for accurate encoding. 

3.2.2 Image Preprocessing 

The StyleGAN2-ADA generator G creates images with pixel values ranging between –1 and 1. Before being 

processed by the decoder D, these images are normalized to the [0, 1] range to maintain compatibility. To avoid 

artifacts from lossy compression, the images are saved in PNG format. This normalization step ensures the decoder 

always receives inputs in a consistent format, improving the reliability of both training and message extraction. 

3.3 Encoder Network 

The encoder E is a fully connected neural network that transforms the binary secret message b into a latent 

perturbation vector Δw. This vector alters the internal latent representation w used by the StyleGAN2-ADA 

generator G. As illustrated in Figure 2, the encoder architecture is composed of three fully connected layers, which 

are followed by a reshaping operation to align the output with the StyleGAN2-ADA input format. 



East Journal of Computer Science 
 

 

 

6 © East Journal of Computer Science 

• Input Layer: Accepts the binary message b as a one-dimensional input vector representing the full bit 

sequence of the secret message. 

• Hidden Layer 1: Projects the input to a 2048-dimensional feature space, with ReLU activation to help 

the network capture high-level patterns in the message. 

• Hidden Layer 2: Expands the feature representation to 4096 dimensions, increasing network’s capacity 

to encode more detailed information. 

• Output Layer: Maps the high-dimensional features from the previous hidden layer into the features of a 

flat vector of size Nₛ × Dₗ. No activation function is applied at this stage. 

• Reshape Operation: Reshapes the output into a tensor of shape [batch, Nₛ, Dₗ], where batch = -1 denotes 

the dynamic batch size. This shape aligns with the style input format expected by the StyleGAN2-ADA 

generator. 

The resulting latent perturbation vector can be expressed as: 

Δ𝑤 = 𝐸(𝑏),  Δ𝑤 ∈ 𝑅𝑁𝑠×𝐷𝑙 (2) 

where Nₛ = 18 is the number of style inputs and Dₗ = 512 is the latent dimensionality in StyleGAN2-ADA. This 

Δw is then added element-wise to the base latent vector w, which is generated by passing a random noise vector z 

through the StyleGAN2-ADA mapping network M. This combination allows the secret message to be embedded 

by subtly modifying the generator’s internal latent space, rather than altering image pixels directly. 

 

Figure 2: Encoder network architecture for StyleGAN2-Stego, mapping the binary secret message into a 

perturbation vector Δw aligned with the StyleGAN2-ADA latent space 
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3.4 StyleGAN2-ADA Generator 

StyleGAN2-Stego employs a StyleGAN2-ADA generator G pre-trained on the FFHQ dataset, which is widely 

used for generating high-quality human face images. The generator’s mapping network M transforms a random 

noise vector z into an intermediate latent vector w. This vector is then modified by adding the latent perturbation 

Δw, produced by the encoder E, resulting in a modified latent vector w′. This modified vector is passed to the 

synthesis network S, which produce the final high-resolution stego image Iₛ. The process can be formally expressed 

as: 

𝐼ₛ = 𝑆(𝑤′),  𝑤′ = 𝑤 + Δ𝑤,  𝑤 = 𝑀(𝑧) (3) 

where  𝑀(⋅) is the mapping network that generates the base latent vector w from the noise input z, and Δw is the 

perturbation vector provided by the encoder. During training, all generator parameters are kept frozen. This design 

choice ensures that image quality is preserved and that the generator’s output distribution remains stable. As a 

result, any variations in the generated images are entirely due to the encoder’s controlled adjustments to the latent 

representation, not from changes in the generator itself.  

It is important to note that the StyleGAN2-ADA generator used in this work was pre-trained on the FFHQ dataset, 

which primarily contains human face images. Consequently, the results are domain-specific to facial imagery. 

Extending the framework to more diverse datasets, such as natural scenes or objects, is an important direction for 

future work to validate generalization across broader visual domains. 

3.5 Decoder Network 

The decoder D is a convolutional neural network (CNN) that recovers the embedded binary message b′ from the 

generated stego image Iₛ. Its architecture is optimized to detect subtle changes introduced in the latent space of the 

generator, without relying on pixel-level modifications. As illustrated in Figure 3, the decoder D consists of the 

following components: 

• Convolutional Layers: Four convolutional layers process the input image (3 channels). Each layer uses 

a 4×4 kernel, stride of 2, and padding of 1. The number of channels increases progressively from 64 to 

512. Batch normalization is applied after the second, third, and fourth layers, followed by ReLU activation 

to ensure stable learning and non-linearity. 

• Adaptive Average Pooling: The feature map is downsampled to a fixed size of 4×4, enabling the network 

to handle high-resolution images while maintaining consistent output dimensions. 

• Flattening and Fully Connected Layers: The pooled feature map is flattened and passed through two 

fully connected layers. The first projects the data from 8192 (i.e., 512×4×4) to 1024 dimensions, followed 

by ReLU activation. The second maps it to the target message length n, corresponding to the total number 

of bits in the original secret message, producing a vector of bitwise probabilities. 

• Output Layer: A Sigmoid activation is applied at the output to constrain values between 0 and 1. These 

values are thresholded to reconstruct the original binary message. 

The decoding process can be formally expressed as: 

𝑏′ = 𝐷(𝐼𝑠),  𝑏′ ∈ {0,1}𝑛 (4) 

where 𝐷(⋅) is the decoder network, Iₛ is the generated stego image, and b′ is the recovered binary message of length 

n. During training, the decoder learns to identify and extract the hidden message from subtle features embedded 

in the generated image. These features are not directly visible but result from controlled perturbations made to the 

generator’s internal latent representation. By training the decoder jointly with the encoder, the system learns to 

reliably recover the original message while ignoring unrelated variations in the image content. 
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Figure 3: Decoder network architecture, designed to recover the embedded binary message from generated 

stego images by identifying subtle latent-space features. 

 

3.6 Loss Function 

The training objective of StyleGAN2-Stego is to simultaneously maximize message reconstruction accuracy while 

preserving the visual fidelity of the generated images. This is accomplished by minimizing a weighted combination 

of two loss functions: secret loss and latent consistency loss. 

3.6.1 Secret Loss 

The secret loss measures how accurately the decoder D recovers the hidden message from the generated stego 

image Iₛ. It is computed using binary cross-entropy (BCE) between the predicted binary message vector b′ and the 

original binary message b. The loss is defined as: 

ℒ𝑠𝑒𝑐𝑟𝑒𝑡 = BCE(𝑏′, 𝑏) (5) 

This loss encourages the decoder to produce bitwise outputs that closely match the original message, thereby 

ensuring high message recovery accuracy. 

3.6.2 Latent Consistency Loss  

To maintain the photorealism of generated stego images, the encoder’s E output perturbation vector Δw is scaled 

and added to the base latent vector w, which is produced by the StyleGAN2-ADA mapping network M. To prevent 

excessive distortion in the latent space, a regularization term is introduced: 

ℒ𝑙𝑎𝑡𝑒𝑛𝑡 = ||Δ𝑤||2
2 (6) 
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This latent consistency loss penalizes large deviations in the latent representation, ensuring that image realism is 

preserved while still allowing meaningful message encoding. 

3.6.3 Total Loss 

The overall training loss combines both objectives, weighted by a balancing hyperparameter λ: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑠𝑒𝑐𝑟𝑒𝑡 + 𝜆 ⋅ ℒ𝑙𝑎𝑡𝑒𝑛𝑡 (7) 

In our experiments, we set λ = 0.5, based on empirical tuning to achieve an optimal trade-off between message 

recovery and image quality. Both the encoder E and decoder D are jointly trained to minimize this total loss, 

ensuring robust performance in both embedding and extraction tasks. 

3.7 Training Procedure 

The encoder E and decoder D networks are trained jointly, while the generator (G) remains fixed to preserve the 

quality of synthesized stego images Iₛ. Training is conducted using the Adam optimizer, with parameters selected 

for stable convergence. The training procedure involves the following steps: 

1. A random noise vector z is sampled from a standard normal distribution and mapped to a latent vector 

using the generator’s mapping network M. 

2. The binary secret message is encoded into a latent perturbation vector by the encoder. 

3. The perturbation vector is added to the base latent vector to obtain the modified latent representation w′, 

which is then passed through the generator to synthesize the stego image. 

4. The generated stego image is passed to the decoder, which attempts to reconstruct the original binary 

message. 

5. The total loss is computed by combining the secret loss and latent consistency loss. Based on this loss, the 

encoder and decoder parameters are updated. 

On average, encoding and decoding a single 256×256 stego image required approximately 10–20 ms for 

embedding and about 2–5 ms for extraction on an NVIDIA RTX 4070 Ti Super GPU. demonstrating the model’s 

suitability for near real-time applications. For full training configuration details, including learning rate, number 

of epochs, and image resolution, refer to Section 4.1. 

4. Experimental Results and Discussion 

4.1 Experimental Setup 

The proposed StyleGAN2-Stego framework was implemented using a pretrained StyleGAN2-ADA generator G, 

originally trained on the FFHQ dataset, as the backbone for coverless stego image synthesis. All experiments were 

conducted in Python using the PyTorch deep learning framework on a workstation equipped with an NVIDIA 

GeForce RTX 4070 Ti Super GPU (16 GB VRAM) and 32 GB RAM. During training, the generator’s weights 

were kept frozen to preserve its learned image distribution. The generation process began by sampling a 512-

dimensional noise vector 𝑧 ∼ 𝒩(0, 𝐼). Which was mapped through the generator’s mapping network M into a 

latent representation w. The encoder then produced a perturbation vector Δw from the binary secret message, which 

was added to w before passing through the generator’s synthesis network S to produce the stego image Iₛ. The 

encoder–decoder network was trained for 120 epochs using the Adam optimizer with a learning rate of 1×10−5. 

All generated stego images had a fixed resolution of 256×256 pixels and were stored in PNG format to avoid 

compression artifacts.  

The performance of the proposed method was evaluated using four metrics: Bits per pixel (𝑏𝑝𝑝) measured the 

payload capacity of stego images: 

𝑏𝑝𝑝 =
𝑙𝑒𝑛(𝑑)

𝑊 × 𝐻
(8) 
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where 𝑙𝑒𝑛(𝑑) is the length of the embedded bit sequence, 𝑊 and 𝐻 are the image width and height. Extraction 

accuracy (Acc) quantified the proportion of correctly recovered bits: 

Acc =
𝑑⊙ 𝑑′

len(𝑑)
(9) 

Here, 𝑑 and 𝑑′ represent the original and recovered bit sequences, and ⊙ denotes the element-wise XNOR 

operation. Detection error probability (𝑃𝑒) was used to assess steganalysis resistance: 

𝑃𝑒 = 𝑚𝑖𝑛𝑃𝐹𝐴
1

2
(𝑃𝐹𝐴 + 𝑃𝑀𝐷) (10) 

where, 𝑃𝐹𝐴 and 𝑃𝑀𝐷 are the false alarm rate and missed detection rate. 𝑃𝑒 ranges in [0, 1], with a value of  𝑃𝑒 = 0.5 

indicating that steganalysis tool cannot distinguish between stego and non-stego images. Lastly, the Fréchet 

Inception Distance (FID) [27] assessed perceptual image quality by comparing the feature distributions of 

generated stego images with those of real images. 

For benchmarking, we compared StyleGAN2-Stego with five representative coverless steganography methods: 

SAGAN-Steg [22], IDEAS [23], Zhang [28], JoCS [29], and Diffusion-Stego [30]. 

4.2 Payload Capacity 

As shown in Table 1, StyleGAN2-Stego achieves an embedding capacity of 32,768 bits per image, corresponding 

to 0.5 bpp for 256 × 256 images. This outperforms SAGAN-Steg, IDEAS, Zhang and JoCS in capacity while 

maintaining high visual fidelity. Although Diffusion-Stego supports higher theoretical payloads, its performance 

deteriorates with increasing capacity due to degradation in visual quality and security. Note that Diffusion-Stego 

reports a wide range of payloads depending on sampling configurations, whereas values for other methods are as 

reported in their original works. 

Table 1: Payload Capacities of Compared Methods 
Methods Capacity (bits/image) Image Size Payload (bpp) 

SAGAN-Steg [22] 1200 64 × 64 0.293 

IDEAS [23] 1536 256 × 256 0.0234 

Zhang [28] 2304 256 × 256 0.0352 

JoCS [29] 48 256 × 256 0.00073 

Diffusion-Stego [30] 4096 – 24576 64 × 64 1 – 6 

StyleGAN2-Stego 32768 256 × 256 0.5 

 

4.3 Training Convergence and Message Recovery 

The training process of StyleGAN2-Stego exhibited stable convergence throughout the 120 epochs. As shown in 

Figure 4, extraction accuracy increased steadily from the random initialization baseline to a final value of 98.72%. 

This gradual, consistent improvement indicates that the encoder–decoder network adapted effectively to the 

embedding and extraction tasks without overfitting or instability. 
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Figure 4: Extraction accuracy over 120 training epochs. 

 

The loss curves in Figure 5 provide further insight into this convergence behavior. The secret loss declined 

smoothly over the course of training, reflecting the network’s growing ability to reconstruct hidden messages with 

high fidelity. In parallel, the Δw loss stayed close to zero for most of the training process, indicating that the latent 

space perturbations were minimal and did not compromise the visual quality of the generated stego images. 

 

Figure 5: Training losses per epoch (secret loss and Δw loss) 

 

Under the final experimental settings, the model achieved a message recovery accuracy of 98.72% for a payload 

of 0.5 bpp. This result confirms the framework’s ability to reliably retrieve embedded messages while maintaining 

imperceptibility and robustness against detection. 
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4.4 Security Assessment Using Steganalysis 

An essential requirement for any steganographic system is resilience against detection by steganalysis tools. In 

this study, the security of StyleGAN2-Stego was evaluated using two well-known CNN-based steganalyzers: Xu-

Net and Ye-Net. These models were trained on 5,000 stego and 5,000 non-stego images, with an additional 1,000 

images per class reserved for testing. StegoGAN-ADA was employed to generate stego images, while non-stego 

images were synthesized by the original pre-trained StyleGAN2-ADA generator. The steganalyzers output a 

classification decision indicating whether an image is suspected of containing hidden information. The detection 

performance is expressed using the detection error probability (𝑃𝑒) defined in Section 4.1. A 𝑃𝑒 value close to 0.5 

indicates that the steganalyzer performs no better than random guessing. Some baseline methods did not report 

steganalysis performance in their original publications (indicated by ‘–’). 

Table 2: Steganalysis Resistance (Pe) Using Xu-Net and Ye-Net 
Methods Xu-Net Ye-Net 

SAGAN-Steg [22] – – 

IDEAS [23] 0.403 0.535 

Zhang [28] 0.497 0.488 

JoCS [29] 0.5025 0.5 

Diffusion-Stego [30] 0.427 - 0.385 – 

StyleGAN2-Stego 0.4860 0.4940 

 

StyleGAN2-Stego’s results are very close to the optimal 𝑃𝑒 of 0.5, indicating that it is extremely difficult for 

steganalyzers to distinguish its stego images from non-stego images. Figure 6 presents the Receiver Operating 

Characteristic (ROC) curves for Xu-Net and Ye-Net applied to StyleGAN2-Stego stego images. Both curves 

remain close to the diagonal, confirming that these steganalyzers perform only slightly better than random 

guessing. This visual evidence reinforces the near-optimal 𝑃𝑒 values reported in Table 2.  

  
Figure 6: Roc Curves of Xu-net and Ye-net models 

 

4.5 Security Assessment Using Image Quality 

In addition to resisting steganalysis, a secure steganographic method must ensure that its stego images are visually 

indistinguishable from non-stego images. This prevents human observers or automated visual inspection from 

suspecting the presence of hidden information. To assess the visual quality of the generated stego images, we 

conducted both quantitative and qualitative assessments. For the quantitative evaluation, the Fréchet Inception 

Distance (FID) was employed, as shown in Table 3. The FID score measures the distribution difference between 

the generated images and real images in a deep feature space, with lower values indicating higher similarity. To 

evaluate our method, we computed the FID between 10,000 real FFHQ images and 10,000 stego images generated 
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by StyleGAN2-Stego. StyleGAN2-Stego achieved an FID value of 6.7762, which demonstrates that the generated 

stego images are visually similar to real images while maintaining a relatively high payload of 0.5 bpp. 

Compared with SAGAN-Steg, IDEAS, Zhang, and JoCS, StyleGAN2-Stego produces superior visual quality. 

Although Diffusion-Stego achieves a slightly lower FID, its visual quality advantage is marginal and comes at the 

expense of reduced robustness and security at higher embedding capacities. Overall, StyleGAN2-Stego offers the 

best balance of imperceptibility, robustness, and practicality. 

Table 3: Visual Quality (FID) Comparison 
Methods FID 

SAGAN-Steg [22] 30.81 

IDEAS [23] 26.37 

Zhang [28] – 

JoCS [29] 10.16 

Diffusion-Stego [30] 2.77 – 3.37 

StyleGAN2-Stego 6.7762 

 

In addition to quantitative evaluation, qualitative analysis was performed. Figure 7 presents visual comparisons of 

stego images generated by StyleGAN2-Stego and other state-of-the-art methods, including SAGAN-Steg [22], 

IDEAS [23], JoCS [29], and Diffusion-Stego [30]. These results confirm that StyleGAN2-Stego achieves both 

high perceptual quality and visual covertness, which are critical for secure image steganography in real-world 

applications. 

 

Figure 7: Stego image samples from StyleGAN2-Stego and other methods for visual quality comparison 
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Furthermore, to illustrate the imperceptibility of our embedding process at a payload of 0.5 bpp, we present a direct 

visual comparison between non-stego and stego images in Figure 8. The top row displays non-stego images 

generated by the pre-trained StyleGAN2-ADA, while the bottom row shows their corresponding stego versions 

produced by our StyleGAN2-Stego framework. The similarity between the two sets confirms that message 

embedding does not introduce visible distortions. 

 

Figure 8: Visual comparison between non-stego images (top) and corresponding stego images (bottom) 

generated by StyleGAN2-Stego at 0.5 bpp 

 

4.6 Overall Performance Comparison 

To demonstrate the effectiveness of StyleGAN2-Stego, we compared its performance with five representative 

coverless image steganography methods: SAGAN-Steg [22], IDEAS [23], Zhang [28], JoCS [29], and Diffusion-

Stego [30]. Table 4 summarizes the results. In this comparison, best-performing values in each column are 

highlighted in bold. Our proposed StyleGAN2-Stego is also bolded to emphasize its balance of high payload, 

strong accuracy, competitive FID, and near-optimal security. 

Table 4: Payload Capacities of Compared Methods 

Methods bpp ↑ Acc (%) ↑ FID ↓ Pe → 0.5 

SAGAN-Steg [22] 0.293 91.73 30.81 – 

IDEAS [23] 0.0234 98.26 26.37 0.535 

Zhang [28] 0.0352 100 – 0.497 

JoCS [29] 0.00073 – 10.16 0.5 

Diffusion-Stego [30] 1 - 6 98.12 - 91.12 2.77 - 3.37 0.427 - 0.385 

StyleGAN2-Stego 0.5 98.72 6.7762 0.494 

 

From Table 4, it is evident that StyleGAN2-Stego strikes an optimal balance between capacity, accuracy, and 

undetectability. Unlike Diffusion-Stego, which achieves slightly lower FID but suffers from reduced 𝑃𝑒 at high 

payloads, StyleGAN2-Stego maintains both security and visual quality. Furthermore, the method’s payload is 

significantly higher than SAGAN-Steg, IDEAS, Zhang and JoCS, while still delivering near-perfect extraction 

accuracy. 

4.7 Discussion 

The results show that StyleGAN2-Stego achieves a strong balance between how much data it can carry, how 

accurately it can be recovered, and how difficult it is to detect. At a payload of 0.5 bpp, the framework maintained 

a high message recovery accuracy of 98.72%. This is a notable result because many generative steganography 

methods lose recovery accuracy as capacity increases. In our case, the encoder–decoder design appears to learn 

stable and reliable latent-space adjustments, even at higher payloads.  
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In terms of security, the framework performed very close to the ideal case where a steganalyzer cannot distinguish 

between stego and non-stego images. The detection error probabilities for Xu-Net (0.4860) and Ye-Net (0.4940) 

are both near 0.5, meaning that these models were essentially guessing. The ROC curves back this up, showing 

lines close to the diagonal, which is what we expect when detection accuracy is no better than random.  

For image quality, the FID score of 6.7762 confirms that the generated images remain visually similar to real 

FFHQ images. Although Diffusion-Stego achieves lower FID scores (2.77–3.37), its reported payload range is 

between 1 and 6 bpp, and results at 0.5 bpp were not provided. At its lowest reported capacity (1 bpp), Diffusion-

Stego achieves strong visual fidelity but shows reduced robustness in message recovery and steganalysis resistance 

compared to StyleGAN2-Stego at 0.5 bpp. This highlights that prioritizing a balanced trade-off between fidelity 

and security, as achieved by our framework, is more practical for real-world use. 

Training the encoder–decoder pair required 120 epochs on an RTX 4070 Ti GPU, which represents a notable 

computational cost compared to training-free approaches such as Diffusion-Stego. Nevertheless, once trained, our 

framework supports efficient message embedding and extraction with near real-time performance. 

A likely reason for our framework’s good performance is the way it works in latent space instead of directly in 

pixel space. By applying small, learned changes to the intermediate representation of a fixed StyleGAN2-ADA 

generator, the embedding process blends the hidden data into the image’s high-level features. This helps maintain 

global image consistency and makes it harder for steganalyzers to detect any unusual patterns. That said, all results 

here are from clean images. In practice, images might be compressed, resized, or slightly altered during 

transmission, and these changes could affect recovery accuracy. Testing under these conditions is an important 

next step to make the method more robust for real-world use. 

5. CONCLUSION 

In this study, we presented StyleGAN2-Stego, a novel steganographic approach that conceals messages by 

applying subtle adjustments to the latent input of a pre-trained StyleGAN2-ADA generator. Unlike traditional 

methods that modify image contents, our framework embeds data deeper within the generative process, preserving 

the natural appearance of the output images.  

The experimental results validate the method’s effectiveness. It achieved high message extraction accuracy, strong 

resistance to detection by advanced steganalysis tools like Xu-Net and Ye-Net, and produced visually realistic 

images, as reflected by competitive FID scores. These results highlight the framework’s ability to maintain a strong 

balance between capacity, imperceptibility, and resilience against detection. 

A notable strength of StyleGAN2-Stego lies in its architecture. By keeping the generator fixed and using a 

streamlined encoder–decoder pair, the training process remains stable and efficient. Additionally, the system 

handles different message lengths with consistency, making it a practical choice for real-world use. While such 

frameworks can strengthen secure communication, they may also be misused for illicit purposes. This raises 

important ethical and security concerns, underscoring the need for counter-steganography tools, regulatory 

measures, and responsible use of such technologies to prevent malicious applications. 

Looking ahead, future work could focus on enhancing the embedding capacity while maintaining visual fidelity 

and security. Other directions include improving robustness against common image transformations (compression, 

resizing, or scaling), and extending the framework to support additional modalities like audio or video. Potential 

applications include secure diplomatic and military communication, digital watermarking for intellectual property 

protection, embedding metadata in multimedia archives, and other domains where covert, reliable, and efficient 

information hiding is critical.  Incorporating adversarial training may also strengthen resistance to emerging 

steganalysis techniques. Overall, this research underscores the promise of latent-space generative models in 

developing secure, high-quality tools for covert communication. 
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