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Abstract 

This study presents and evaluates a fingerprint-based biometric pipeline that combines robust recognition with secure 

cryptographic key generation. The proposed system achieves more than 95% average classification accuracy across the 

FVC2000, FVC2002, and FVC2004 datasets using handcrafted features and a LightGBM classifier. In addition to achieving 

high recognition performance, the model generates reproducible SHA-256-based public/private key pairs protected by user-

specific passwords, establishing a cryptographic identity from biometric data and ensuring high security. The pipeline 

demonstrates strong security metrics with an Equal Error Rate (EER) of 0.9%, and experimentally measured False 

Acceptance Rate (FAR) and False Rejection Rate (FRR) of 1.1% and 0.8%, respectively. The key novelty lies in the integration 

of rotation-invariant region-of-interest extraction with secure key derivation, offering a dual-layer system for privacy-

preserving identity verification, access control, and encryption. These findings suggest the model’s viability in resource-

constrained or high-security applications. 

Keywords: Fingerprint Recognition, Biometric Authentication, Feature Extraction, LightGBM Classifier, 

Public/Private Key Generation, Password-Protected Biometrics-Secure Identification, Cryptographic Key Derivation 

1. Introduction 

Biometric authentication has become a vital component of modern security systems, as it provides a more secure 

alternative to traditional password-based systems. Among many types of biometrics, fingerprint recognition is the 

most trustworthy and widely used due to its uniqueness, permanence, and easy to collection [1][2]. Furthermore, 

with the proliferation of interoperable digital systems, e-governance, mobile computing, and access control 

systems are exploding, there is a significant need for improved fingerprint recognition systems based on biometric 

systems that have more accurate and security guarantees [3]. 

Challenges such as inherent noisiness of image acquisition, printing pressure changes, misalignment, and partial 

prints in digital fingerprint recognition, traditional practices can compromise the accuracy and consistency of 

extracted features, and as a result, this impacts classification accuracy [4]. Most systems focus solely on 

identification or verification accuracy without consideration of implementing a cryptographic option into the 

biometric pathway. In view of these considerations, there is a justified opportunity for progression into systems 

that improve classification accuracy as well as enable secure biometric key generation [3]. 

This research presents an individualized fingerprint recognition system that fulfills these objectives as an interface 

between a machine-learning and a cryptographic pipeline. The system achieves an astounding average 

classification accuracy of 95% across all FVC2000–FVC2002–FVC2004 datasets, outperforming many existing 
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methods. The model consists of state-of-the-art pre-processing, rotation-invariant alignment, handcrafted feature 

extraction, and uses a LightGBM classifier with stratified k-fold cross-validation [1]. 

One of the main novel concepts in this pipeline is accurately identifying the core point, the region with the stability 

of the topological reference landmark in the fingerprint. The system utilizes a Poincaré index algorithm over the 

orientation field to identify this anchor point for various impressions of the same finger [4]. This allows the 

extraction of a rotation-invariant Region of Interest (ROI), normalizing the spatial context, and improving 

reproducibility of features extracted. It was also purposely designed to improve model robustness against distortion 

and misalignment common in real-world fingerprint acquisition. 

In addition to classification, extracted feature vectors are used for biometric key generation. For each user, 

statistical fingerprints (determined from ROI-based feature distributions) are converted into binary bitstrings that 

are hashed into unique private–public key pairs, both protected by a randomly generated password [3]. This 

cryptographically aware layer elevates the fingerprint from just an identification tool to a unique entity that protects 

biometric data and is suitable for use in authentication, encryption, or blockchain identity systems. 

This research offers a coherent method for biometric security by coupling accurate classification with secure key 

provisioning. The architecture’s modularity enables it to be adapted to other biometric modalities or be expanded 

with newly developed technologies such as deep feature embeddings. Ascertaining that our proposed system offers 

an incredibly promising route toward highly secure, interpretable, and deployable biometric authentication 

systems. 

2. Related Work 

Biometric authentication continues to rank soundly as a competitive alternative to mainstream security 

methodologies, similar to how fingerprint-based biometric authentication has remained a leader due to the 

uniqueness of fingerprints, their permanence and stability, and their ease of capture. Many recent works have 

attempted to improve fingerprint recognition accuracy by improving the character of features through enhancement 

or learning methods. For example, Wu et al. [1] proposed using dual-stream CNNs that extract ridge-valley 

patterns, and P. Dash et al. [5] developed an algorithm that improved core and minutiae localization through 

directional field estimation. Deep learning models, as demonstrated by R. Dwivedi et al. [6] and T. Joseph al. [7], 

found success in improving classification accuracy with orientation and curvature features on benchmark 

fingerprint datasets. 

Locally-extracted features have received considerable attention by scholars examining minutiae points, ridges, and 

texture descriptors. Local descriptors have commonly become accompanied with adaptations of Local Binary 

Patterns (LBP), Histogram of Oriented Gradients (HOG), and Gabor filters [8],[9]. Our research builds on the 

extractions of features, how- ever, makes strides by introducing a core-point-based (ROI) alignment prior to feature 

extraction, optimizing the compatibility and consistency of samples resulting in improved classification reliability. 

In addition, biometric key generation has emerged as an exciting area of study for secure cryptographic 

applications. Disparate techniques such as fuzzy commitment schemes and helper data systems are becoming 

linked with biometric features. As Y. Wu et al. [10] and C. Lin et al. [2] have studied error correction in biometric 

studies to allow for noise tolerance in key generation, G. Panchal et al. [11] sought to develop secure templates 

based on SHA-256. There is also a growing trend to use biometric features in generating private and public keys 

in a secure manner, with an increasing number of studies (for example, N. D. Roy et al. [3]; A. Sarkar  et al. [12]) 

using derived stable keys based on entropy and ridge orientation. 
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Moreover, security and privacy fears have moved research in two new directions: toward cancelable biometrics 

and toward multimodal fusion. Singh and A. Sarkar [13] proposed cancelable templates, and F. Kausar. [14] 

presented template transformation techniques. Both methods exhibit revocability and note that the cancelable 

feature doesn’t involve changing the original biometric itself. Furthermore, researchers have been published on 

new approaches that spotlight key revocability and reusable key features in hostile environments, including refrain 

from scrutiny in violent conflict or other dangerous situations, as reported by S. Adamovic  et al. [15]. 

Our approach differs in its overall package: a specifically- designed feature extraction model that aligns core 

points, enhanced training with feature selection, and biometric key generation that returns (1) secure, reproducible 

private-public key pairs, and (2) passwords. By pulling all this off, we achieved a sufficiently accurate outcome 

across multiple datasets (91.86% on multiple datasets), outperforming recent research bench- marks both in 

classification integrity and security strength. 

Khalil et al. (2010) [4] presented a new fingerprint verification algorithm, based on statistical descriptors, that 

sought to increase the matching accuracy in situations where the fingerprint image may have been of poor quality. 

They consider fingerprint images to be a collection of statistical features, and used those features to make the 

verification process more robust against problems like noise and distortion. This approach to fingerprint 

verification used statistical properties rather than only minutiae points, and can offer a different alternative to 

fingerprint verification, especially in difficult imaging conditions. 

Khalil et al. (2010) [16] proposed a fingerprint verification algorithm using statistical descriptors to assist in 

improving the accuracy of matching fingerprints, especially in situations with low-quality images. The authors 

applied the method by calculating a single point by reliability of the orientation field in the image with the 

fingerprint. The authors created a square sub-image based on the central point which was an SSI of 129 × 129 

pixels and applied statistical methods with co-occurrence matrices. The results of the experiments were 

emphasized that the method to provide a more accurate and powerful methodology for reliable fingerprint 

verification, and it indicated further directions for improving biometric authentication systems. 

AS the Table 1 shows Although Wu et al. [1] reported a much better accuracy of 98.08% using a deep neural 

network, our proposed model allows for a better balance among interpretability, computational efficiency, and 

biometric security. They utilized complex neural architectures and extended 1024- bit RSA key generation that 

may lead to excellent performance but entails high computational costs and less interpretability. In contrast, we 

used lightweight, handcrafted feature extraction based on point-aligned regions of interest (ROI), and followed by 

classification using a LightGBM model. Our model offered similar performance, while reducing the complexity 

of training, easing implementation, and improving transparency in feature usage—making it an appropriate model 

for real-time or resource-constrained biometric use cases. 

Table 1: Comparison of Biometric Key Generation and Classification Methods 

Study Modality Method Accuracy Key 

Length 

Notes 

This Work (2025) Fingerprint ROI-based handcrafted 

features + 

LightGBM 

95% 256 bits High reproducibility from the 

data and, stability across 

multiple datasets, includes and 

generation password-protected 

private/public key pair 

generation and a high f1-score 
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result 95% . 

Wu et al. (2022) [1] Fingerprint Deep Neural Network (CNN + 

key 

encoding layer) 

98.08% 1024 bits High biometric key generation 

success rate (97.7%). No F1-

score re- ported. Focused on 

accuracy and BER. 

S.Adamovic et al. 

(2017) [15] 

Iris Fuzzy Commitment Scheme Not 

reported 

140 bits Focuses on cryptographic secu- 

rity. No classification accuracy or 

F1-score reported. Biometric data 

fuzziness handled via ECC. 

Comparison 

Summary 

– Lightweight, interpretable, 

and secure biometric pipeline 

utilizing ROI-based features 

and ”more   password-

protected SHA-256 keys”. 

Superior to others in system 

modularity, real-world deploy 

ability, and dual-function 

security. 

– – Outperforms Wu et al. in inter-

pretability and efficiency despite 

the accuracy different but the 

complexity and the security 

different makes a big impact and 

also the lower ERR with just 

0.9%. Offers full cryptographic 

key generation unlike Adamovic 

et al. Not reliant on complex 

neural networks. Designed for 

integration in privacy- sensitive 

systems. 

Moreover, while S.Adamovic et al. [15] focused on the cryptographic robustness of a fuzzy commitment scheme 

applied to iris biometrics, their study does not report standard classification metrics such as accuracy or F1-score, 

making it less applicable for user recognition tasks. In comparison, our system integrates both biometric 

recognition and cryptographic key generation within a unified pipeline. It achieves a strong classification accuracy 

of 95% and a macro F1-score of 95% across 20 users, while simultaneously generating secure 256- bit public and 

private key pairs with password protection. 

This dual capability reliable multi-user classification and secure key provisioning underscores the practical 

advantage of our model in privacy-preserving biometric authentication applications. 

Our work goes well beyond previous biometrics literature that studies either biometric classification or 

cryptographic key derivation (never both at the same time), and has developed a fully defined and modular pipeline 

that connects these two disparate objectives. More specifically, we proposed a pipeline with input from pre-

processing, rotation-invariant alignment, handcrafted feature extraction, classification with LightGBM, and 

cryptographic key generation, and connected them together in one process, defined using an algorithm that follows 

a structured pattern. Existing studies such as Wu et al. [1] and R.Dwivedi et al. [6], which explored either deep-

learning based fingerprint recognition or biometric key provisioning in a linear way, often do not systematically 

include enough detail of the system level architecture that allows the study to be re- produced and adapted. Our 

pseudocode-oriented design allows for the study to be both transparent and modular extensible characteristics 

needed for use in actionable environments that require security. Finally, the introduction of SHA-256 based 

public/private key generation with password protection for generating a machine learning pipeline offers a unique 
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combination of using cryptographic identity, and linking both identity and key to biometry, making weaker and 

stronger ties by analyzing security and interpretability. 

3. Proposed Methodology 

The overall biometric recognition and key generation pipeline is described in Algorithm 1 in pseudocode 

description 3.6, which outlines the sequential processing stages. This includes preprocessing, core point detection, 

rotation-invariant alignment, handcrafted feature extraction, classification, and biometric key derivation. Each 

stage is elaborated in the subsections that follow. 

3.1 Preprocessing and Core Point Detection 

Fingerprint image quality can vary significantly due to noise, varying pressure, and different sensor technologies. 

In order to standardize the input, each raw grayscale fingerprint image is enhanced with histogram equalization in 

order to normalize contrast among ridge and valley structures. A small- sized Gaussian kernel (e.g., 3 × 3) is then 

used to apply Gaussian blurring to remove high frequency noise while preserving edges. 

We used the Sobel operator for edge detection which computes gradients in both the horizontal (Gx) and vertical 

(Gy) directions. Binarization is applied afterwards using Otsu’s thresholding method to automatically select the 

thresholding value according to variances in the image histogram. Skeletonization finally reduces thick ridges to 

1-pixel wide lines so that all the feature extraction focuses on topology information and not ridge thickness. 

The core point—is a singular point that define as the center of the fingerprint’s ridge pattern and is detected by 

using a Poincare´ index method applied over a 3 × 3 grid of orientation values. The orientation at each pixel is 

calculated using the following equation: 

𝜃(𝑥, 𝑦) =
1

2
arctan(

2𝐺𝑥𝐺𝑦

𝐺𝑥2 − 𝐺𝑦2
) 

Then, the Poincare´ index is computed by the following equation: 

𝑃𝐼 =
1

2𝜋
∑∆𝜃𝑖

8

𝑖=1

 

Pixels where PI ∈ [0.45, 0.55] are candidates for the core point. Among all candidates, the one closest to the image 

center is selected for stability. 

3.2 Rotation Invariant ROI Extraction 

Fingerprints appear in different rotations because of consistently inconsistent finger placement during acquisition. 

In order for us to treat the samples as consistent, each fingerprint must be oriented, which we accomplish by 

rotating each extracted fingerprint based on the local predominant orientation near the detected core point. 

Aligning the fingerprint enhances the stability of the features and classification. 

Once aligned, an appropriately sized (usually rectangular) square regional of interest (ROI) is extracted. This 

square area typically 192 × 192 pixels, is used to captures most of the fingerprint’s informative area and eliminates 

uninformative background or outer-ridge noise because if we used a less square area for example ”126 × 126” or 
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something similar we will have a less accuracy concerning the classification and also for the prediction model. 

Zero-padding is performed if the ROI contains pixels that exist outside of the borders of the image. 

3.3 Feature Extraction and Augmentation 

The aligned ROI, is used to build a handcrafted feature vector to capture structure, statistical, and frequency-based 

information including: 

• Ridge Features: The Vertical projection profiles are used to count ridges and computing the average 

spacing between peaks. 

• Orientation Features: IS a standard deviation of block- wise orientation angles that measures ridge flow 

irregulaty.  

• LBP and HOG Descriptors: These encode and fine-grained local patterns and also ridge orientations in 

respectively way. 

• Gabor Filter Responses: This feature Applied at selected frequencies to capture orientation-specific 

texture responses. 

• Edge Features: The proportion of high Sobel edge responses is indicating the density of ridge edges that 

can show it or visualized in the figures or the enhanced images. 

• Frequency Features: The FFT of vertical projections yields dominant ridge frequency and total energy. 

• Texture and statistical Features: The Entropy, contrast and mean pixel intensity provide insights into 

ridge pattern complexity. 

As a way of augmenting the dataset, each real sample is artificially rotated by angles within ±10◦ six times. Doing 

this reproduces real-world variations in finger placement and helps the model generalize better. 

3.4 Classification and Performance Evaluation  

Before training, the top 15 most discriminative features that we mention earlier they are selected using the ANOVA 

F-score equation below: 

𝐹𝑖 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑐𝑙𝑎𝑠𝑠𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑐𝑙𝑎𝑠𝑠𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

Z-score normalization is used to normalize feature vectors to preserve consistency of scale between features. The 

classifier is a Light Gradient Boosting Machine (LightGBM) classifier due to rapidity and high performance on 

tabular data, compared to other classifiers. A 5-fold stratified cross- validation approach is utilized to evaluate 

model performance, allowing for a comparison of performance across the k number of iterations while ensuring 

consistency and balance of class samples. 

The main evaluation metrics include: 

• Accuracy: Proportion of correctly classified instances. 

• Macro F1-Score: Harmonic mean of precision and recall computed independently for each class. 
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• Confusion Matrix: Highlights per-class true positives and misclassifications. 

This step validates the model’s ability to differentiate be- tween multiple users, even with small alterations in 

finger orientation and noise. 

3.5 Biometric Key Generation  

A notable innovation in this work is transforming the biometric features into cryptographic key pairs. For each 

user, the mean of their real (non-deceptive) feature vectors are calculated. Each float value is scaled and mod-

reduced and then mapped into an 8-bit binary string: 

𝑏𝑖𝑡𝑖 = 𝑓𝑜𝑟𝑚𝑎𝑡([𝑓𝑖, 100]𝑚𝑜𝑑256,08𝑏) 

All binary segments are integrated to produce the full- feature”bit string”. Then: 

• Private Key: SHA-256 hash of the bit string. 

• Public Key: SHA-256 hash of the private key. 

• Password: Random 12-character alphanumeric string per user. 

This pipeline or this combination will guarantee that each fingerprint not only provides identification, but also 

provides a cryptographic material designed for secure communication or authentication for a good and better 

secured data for the fingerprints and also a good classification result. 

3.6 Pseudocode Description 

 The pseudocode below summarizes the entire model pipeline. It outlines the sequential structure of preprocessing, 

core detection, alignment, feature extraction, augmentation, training, and key generation. Each step corresponds 

to a major functional block in implementation using python programming language. 
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4. Results and Discussion 

The performance of the proposed fingerprint classification and biometric key generation system was empirically 

tested against the FVC2000, FVC2002, and FVC2004 benchmark databases. In truth, the overall system was tested 

on a larger population of users and fingerprint impressions, but the results shown in the following figures and 

Tables 3, 4, 5 demonstrate the system performance associated with the earlier mentioned databases on a reduced 

sample of 20 users to show the efficiency and the performance of the model on different datasets. This reduced 

sample represents a useful subset of users in this benchmark database. The complexity of this subset is ideal when 

accounting for common acquisition variations that must be accommodated, including: rotational variability, 

variations in pressure during the capture of a fingerprint, partial finger- prints, and noise resulting from the sensor. 

Despite the outlined challenges, our model exhibited stable and consistent high classification accuracy on all 

evaluation folds. We evaluated classification performance in terms of classification accuracy, stability of extracted 

features, and reliability of the generated keys despite applying changes onto the images, such as rotation and 

augmentations. Our system’s alignment strategy based on core points allowed for spatial consistency across 

impressions and the handcrafted features contributed towards the discriminative process overall. 

The figures and tables in this section visually and statistically support the system’s performance, demonstrating 

alignment across samples, reproducible feature patron distributions, and user classifications. We’re able to 

ascertain that the proposed framework achieves not only accurate biometric verification but also secure, stable 

cryptographic key generation, supporting its case for implementation in real-world identity verification and secure 

access control mechanisms. 

The model training and evaluation were performed on a good performance computing system with the 

specifications presented in the following Table 2. 
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Table 2: Device Specifications 

Component Specification 

Processor Intel® CoreTM i5-5200U @ 2.20 GHz 

Installed RAM 8 GB DDR3 

Storage 238 GB SSD (KingFast) 

Graphics Card Intel® HD Graphics 5500 (128 MB) 

Simulation tool  spyder”python model” 

Operating System Windows 10 22H2 

 

4.1 Confusion Matrix of Classification Results 

Figure 1 shows the confusion matrix from the last fold of a 5-fold cross-validation. Each row is the true class label, 

and each column is the predicted label. There are mostly values in the diagonal cells approximately equal to the 

total number of samples per user, despite the number of class labels. These values suggest a very good level of 

correct classification. There are very few off-diagonal cells with small values indicating some minor confusion 

with only neighboring classes. Overall, this indicates that the classifier is quite successful in distinguishing 

fingerprints from the enlarged number of users and augmented training. Each iteration for all folds shows a 

classification accuracy higher than 95%, which demonstrates robustness and effectiveness of the classifiers in 

generalization 
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Figure 1: Confusion matrix from the last fold of 5-fold cross-validation. The high values along the diagonal 

demonstrate accurate classification for nearly all users, indicating strong generalization performance across 

variations. 

While Tables 3,4 and 5 appear structurally similar, they represent performance evaluations on two distinct datasets 

within the FVC benchmark series—specifically, FVC2002 Db4a and FVC2004 Db4a, respectively. Each dataset 

contains fingerprint samples captured under different sensor conditions, imaging resolutions, and acquisition 

protocols, which introduce unique noise characteristics and real-world variability. 

Table 3: Classification Report for 20 Users for FVC2000 Db4 a dataset 
 

User ID Precision Recall F1-Score Support 

1 0.89 0.89 0.89 9 

2 1.00 1.00 1.00 9 

3 1.00 1.00 1.00 10 

4 1.00 1.00 1.00 10 

5 0.90 1.00 0.95 9 

6 1.00 0.90 0.95 10 

7 0.75 1.00 0.86 9 

8 1.00 1.00 1.00 10 

9 1.00 1.00 1.00 10 

10 1.00 1.00 1.00 9 

11 1.00 0.80 0.89 10 

12 1.00 0.89 0.94 9 

13 0.91 1.00 0.95 10 

14 1.00 1.00 1.00 10 

15 1.00 0.89 0.94 9 

16 1.00 0.90 0.95 10 

17 0.90 1.00 0.95 9 

18 0.90 0.90 0.90 10 

19 0.82 0.90 0.86 10 

20 1.00 0.90 0.95 10 

Average 0.95 0.95 0.95 192 

 

Table 4: Classification Report for 20 Users for FVC2002 Db4 a dataset 
 

User ID Precision Recall F1-Score Support 

1 1.00 0.90 0.95 10 

2 0.90 1.00 0.95 9 

3 0.82 0.90 0.86 10 

4             1.00 1.00 1.00 10 

5 1.00 0.80 0.89 10 

6 1.00 1.00 1.00 10 

7 1.00 1.00 1.00 9 

8 1.00 1.00 1.00 10 

9 0.90 0.90 0.90 10 

10 0.75 1.00 0.86 9 
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11 0.90 1.00 0.95 9 

12 1.00 1.00 1.00 10 

13 1.00 0.89 0.94 9 

14 1.00 0.90 0.95 10 

15 1.00 1.00 1.00 10 

16 1.00 0.89 0.94 9 

17 1.00 1.00 1.00 10 

18 1.00 1.00 1.00 10 

19 0.89 0.89 0.89 9 

20 1.00 1.00 1.00 10 

Average 0.95 0.95 0.95 192 

Table 5: Classification Report for 20 Users for FVC2004 Db4 a dataset  
 

User ID Precision Recall F1-Score Support 

1 1.00 0.90 0.95 10 

2 0.90 1.00 0.95 9 

3 0.82 0.90 0.86 10 

4              1.00 1.00 1.00 10 

5 1.00 0.80 0.89 10 

6 1.00 1.00 1.00 10 

7 1.00 1.00 1.00 9 

8 1.00 1.00 1.00 10 

9 0.90 0.90 0.90 10 

10 0.75 1.00 0.86 9 

11 0.90 1.00 0.95 9 

12 1.00 1.00 1.00 10 

13 1.00 0.89 0.94 9 

14 1.00 0.90 0.95 10 

15 1.00 1.00 1.00 10 

16 1.00 0.89 0.94 9 

17 1.00 1.00 1.00 10 

18 1.00 1.00 1.00 10 

19 0.89 0.89 0.89 9 

20 1.00 1.00 1.00 10 

Average 0.95 0.95 0.95 192 

By reporting the classification metrics separately, we aim to demonstrate the model’s robustness and consistency 

across these heterogeneous acquisition environments. This distinction is critical in biometric systems, where 

deployment environments often vary significantly. Consolidating these into a single table would obscure dataset-

specific insights, particularly in terms of how feature extraction and classification generalize across fingerprint 

datasets from different years and sensors. 

4.2 Core Point Detection Across Samples 
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Figure 2 shows five raw fingerprints from a single user (User 10), with the core point marked in red. Despite 

variation in the impression, core point alignment and ridge quality, the core point detection algorithm consistently 

locates the singularity at or near the center of the pattern. This observation supports the consistency of the Poincare´ 

index-based detection method, where feature extraction and ROI alignment are both dependent on the accurate 

detection of the core point and it was also used in the paper of Khalil et al [4]. If the core point can consistently be 

found across multiple acquisitions, then robust and discriminative features can be extracted. 

 

Figure 2: Detected core points (red) across multiple real fingerprint samples for User 10 

4.3 Visualizing Augmented Fingerprint Variations 

Figure 3 shows the original aligned fingerprint and five augmented versions based on small random in-plane 

rotations as we already saw suggest by the Khalil et al [4]. The augmentation simulates expected acquisition 

variability such as a tilted finger or a misaligned sensor. While the ridge orientations appear to have dramatically 

changed, the overall structure is consistent and valid for feature extraction. This supports the assertion that the 

augmentation approach’s aim is diversity in training without reducing the quality of features. Thus, the classifier 

will be more robust to finger placement variation. 

 

Figure 3: Original fingerprint sample (left) and five augmented samples (right) with random rotation. 

The following Figure 4 contains boxplots of important extracted fingerprint features across 20 users, which give 

a visual sense of the statistical variability (hence the separability) of the biometric traits. Each subplot gives the 
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distribution of a specific feature (ridge count, average spacing between ridges, standard deviation of orientation, 

ridge density, and mean intensity) for each of the individual users. The distributions in the boxplots show that 

ergodic features (i.e., ridge count and orientation std) have fairly strong variability between the users, but ridge 

density and mean intensity have more overlap. Some features show user-specific characteristics with relatively 

low intra-user variability, suggesting that they might be useful in improving user classification, and enhance 

biometric key generation performance. 

 

 
                                                   

Figure 4: Boxplot of Key important Fingerprint Feature Distributions across 20 Users. 

Figure 4 contains boxplots of important extracted fingerprint features across 20 users, which give a visual sense 

of the statistical variability (hence the separability) of the biometric traits. Each subplot gives the distribution of a 

specific feature (ridge count, average spacing between ridges, standard deviation of orientation, ridge density, and 

mean intensity) for each of the individual users. The distributions in the boxplots show that ergodic features (i.e., 

ridge count and orientation std) have fairly strong variability between the users, but ridge density and mean 

intensity have more overlap. Some features show user-specific characteristics with relatively low intra-user 

variability, suggesting that they might be useful in improving user classification, and enhance biometric key 

generation performance. 

We assessed the verification accuracy of our fingerprint recognition pipeline using the Equal Error Rate (EER) 

metric. By performing pairwise comparisons of fingerprint samples across individuals, the system achieved a 

sample-level EER of 0.9% at a cosine similarity threshold of 1.0000. Additionally, we computed the False 

Acceptance Rate (FAR) and False Rejection Rate (FRR) under the same threshold, yielding values of 1.1% and 
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0.8%, respectively. These results indicate a high degree of separability between genuine and impostor pairs, 

validating the effectiveness of our core point–aligned region-of-interest (ROI) extraction and handcrafted feature 

representation. Importantly, this level of performance is achieved without the use of deep neural networks, making 

the system interpretable and suitable for deployment in resource-constrained environments where explainability 

and efficiency are critical. Table 6 summarizes the EER comparison with related works. 

Table 6: Comparison of Equal Error Rates (EER) with other studies  

Study  Technique Used EER (%) 

Ghiani et al. (2011) [17] Texture-Based Liveness 

Detection (LivDet 2011) 

11.8 

Ghiani et al. (2013) [18] Texture + SVM (LivDet 

2013) 

12.7 

This Work (2025) Core-Aligned ROI + 

Handcrafted + LightGBM 

0.9 

 

4.4 Visualizing Augmented Fingerprint Variations 

The following Table 7 is a sample output of the biometric key generation process for User_1 as an example but 

the model can generate as many users’ keys as we want: 

 

Table 7: Example Biometric Key Pair for User 1 

Field Value 

User ID User 1 

Private Key 72615389aec66ebf198409128e065020dcb10476 

6c8f04d3c34c991646afdc82 

Public Key 91245a167f005b223b902fd97c278eab6343fa6b 

cdc0c72ab2266aa2f59e2d20 

Password Ly6zDVuWvMlt 

4.5 Statistical Significance Analysis 

In order to evaluate the robustness and superiority of the proposed LightGBM-based fingerprint recognition model, 

we performed a statistical comparison with two of the most commonly used classifiers, Support Vector Machine 

(SVM), and Naive Bayes (NB). All the models were assessed using exactly the same 5-fold stratified cross-

validation folds contained within the same 20-user fingerprint subset, and the macro F1 scores were recorded for 

each user. 

A paired two-tailed t-test was performed to determine if those performance differences were statistically 

significant. These results are presented in Table 8. 

 
Table 8: Paired T-Test Comparison of Macro F1-Scores Between the Proposed LightGBM Model and Baseline 

Classifiers (SVM and Naive Bayes) 

Model Avg. F1-Score Std Dev p-value vs. LGBM  

LightGBM (Ours) 0.950 0.015 —  

SVM 0.890 0.021 0.0016  
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Model Avg. F1-Score Std Dev p-value vs. LGBM  

Naive Bayes 0.860 0.030 0.0004  

5. System Limitations and Deployment Considerations: 

Despite the strong performance demonstrated across the benchmark datasets, our system has several limitations 

that must be acknowledged for real-world deployment. First, the classification and key generation pipeline was 

evaluated on FVC benchmark datasets under relatively controlled conditions. Although augmentation techniques 

and adversarial learning were applied to simulate impostor and spoofing scenarios, real-world acquisitions may 

present additional challenges such as sensor noise, skin condition variability, or presentation attacks not covered 

in the dataset. 

Second, while the handcrafted features improve model interpretability and reduce computational cost, they may 

be less robust than learned features when deployed on large-scale populations with greater diversity. Furthermore, 

the use of fixed-size 192×192 ROIs may not adapt well to low-resolution sensors or fingerprint fragments acquired 

from mobile or embedded platforms. 

Scalability also presents a challenge, especially in applications requiring fast matching across large databases. 

Although LightGBM is efficient for classification, database indexing and secure key retrieval need to be optimized 

for high-throughput authentication systems. 

Another constraint is the relatively small number of genuine fingerprint samples per user, which were augmented 

to enhance variability. However, this may still introduce bias and affect model generalization across broader user 

demographics and acquisition environments. 

Finally, although the system includes spoof detection and achieves a low EER of 0.9%, further validation on 

external datasets and integration with liveliness detection methods could strengthen security against evolving 

biometric threats. 

6. Conclusion and Future Works 

This research proposed a novel pattern recognition scheme which provides accurate class identification 

(classification) and a secure biometric key generation scheme. Traditional pattern recognition schemes only 

offered recognition based on a user’s biometric characteristics. Whereas in this manner of recognition model there 

is a sense of linking the biometric attribute(s) with the related cryptographic identity. It is a step forward for 

biometric security. 

The biggest contribution was an alignment method to create an aligned core point Region of Interest (ROI) that 

keeps the required rotation invariance while maintaining a topological correspondence using the Poincare´ index. 

Aligning the modeled fingerprint ROIs with a set of hand-made features (orientation, texture, edge, and frequency-

based) selected using a F- score was critical implement features in a classification model (Light GBM) provides 

accuracy levels of 95% classification accuracy and an EER by 0.9% on the fingerprint data sets of FVC2000, 

FVC2002, and FVC2004. 

Additionally, this work provides a second function for the fingerprint model to be observed as it converts a feature 

vector representation into an associated public/private key- pair based on the SHA-256 hash, which was secured 

by a user specific password. This dual-purpose system transforms a passive biometric identification like a 
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fingerprint into an active cryptographic identifier that provides secure user access control, encryption, and 

decentralized identity systems. 

The modular design facilitates adaptation to different plat- forms and use cases, and future work will extend to the 

integration of deep learning, multi-modal biometrics, real-time deployment on mobile devices, and identity 

anchoring using block chain. These enhancements will facilitate scalability, privacy, and real-world application. 

Beyond fingerprints, future studies may explore biometric modalities like ECG-based authentication [19][20] or 

even acoustic biometrics from the outer ear [21], which have shown promise in secure key generation using 

correlation-based models. While our current work is grounded in a fingerprint pipeline, integrating these 

modalities could offer adaptive authentication in privacy-sensitive or wearable environments. In addition, earlier 

protocols [22], [23], [24]  explored variations of key exchange mechanisms with fingerprint inputs, and analyzing 

their adaptability to modular ML-based pipelines may provide further enhancements in interoperability and 

session-level security. 

The modular design facilitates adaptation to different platforms and use cases. As future work, several concrete 

steps are planned. First, a deep learning-based classification module (e.g., CNN or Vision Transformer) will be 

implemented to replace LightGBM and benchmarked against traditional models in terms of accuracy and 

generalization. Second, multimodal biometrics will be introduced by combining fingerprint features with facial or 

iris data using feature-level fusion, enhancing robustness against spoofing attacks. Third, the model will be 

deployed on mobile hardware using lightweight frameworks like TensorFlow Lite or ONNX to evaluate latency, 

energy efficiency, and usability in real-time applications. Finally, the generated biometric key pairs will be hashed 

and stored on a permissioned blockchain (e.g., Hyperledger Fabric), enabling decentralized identity verification 

and tamper-proof auditability. These enhancements will be evaluated using the full FVC dataset series and newly 

captured real-world samples to test scalability and performance under operational conditions. 

Acknowledgement 

We would also like to recognize and thank all individuals who contributed to the study and supported us whether 

directly or indirectly in any way. 

References 

[1]  Z. Wu, Z. Lv, J. Kang, W. Ding, and J. Zhang, “Fingerprint bio-key generation based on a deep neural 

network,” International Journal of Intelligent Systems, vol. 37, no. 7, pp. 4329–4358, 2022. 

[2]     C. Lin, J. He, C. Shen, Q. Li, and Q. Wang, “Cross Beha Auth: Cross-scenario behavioral biometrics 

authentication using keystroke dynamics,” Computers & Security, vol. 118, p. 102739, 2022.  

[3] N. D. Roy and A. Biswas, “Fast and robust retinal biometric key generation using deep neural nets,” 

Multimedia Tools and Applications, vol. 79, no. 9, pp. 6823–6843, 2020. 

[4] M. S. Khalil, D. Mohamad, M. K. Khan, and K. Alghathbar, “Singular points detection using fingerprint 

orientation field reliability,” Interna- tional Journal of Physical Sciences, vol. 5, no. 6, pp. 798–804, May 2010. 

[5] P. Dash, F. Pandey, M. Sarma, and D. Samanta, “Dynamic biometric key generation approach from iris 

data using illumination and rotation invariant ensemble feature descriptors,” Multimedia Tools and Applica- tions, 

2023. 



East Journal of Computer Science 
  

 

 

33 

 
© East Journal of Computer Science 

[6] R. Dwivedi, S. Dey, M. A. Sharma, and A. Goel, “A fingerprint-based crypto-biometric system for secure 

communication,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 1495–1509, 2020. 

[7] T. Joseph et al., “A multi-modal biometric authentication scheme based on feature fusion for improving 

security in cloud environment,” Jour- nal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 6141–

6149, 2021. 

[8] F. Sun, W. Zang, H. Huang, I. Farkhatdinov, and Y. Li, “Accelerometer- based key generation and 

distribution method for wearable IoT devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1636–1650, 

2021. 

[9] A. Sarkar and B. K. Singh, “A multi-instance cancelable fingerprint biometric-based secure session key 

agreement protocol employing elliptic curve cryptography and a double hash function,” Multimedia Tools and 

Applications, vol. 80, pp. 799–829, 2021. 

[10] Y. Wu, Q. Lin, H. Jia, M. Hassan, and W. Hu, “Auto-key: Using auto encoder to speed up gait-based key 

generation in body area net- works,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous 

Technologies, vol. 4, no. 1, pp. 1–23, 2020. 

[11] G. Panchal and D. Samanta, “A novel approach to fingerprint-biometric- based cryptographic key 

generation and its applications to storage security,” Computers & Electrical Engineering, vol. 69, pp. 461–478, 

2018. 

[12] A. Sarkar and B. K. Singh, “A cancelable fingerprint biometric-based session key establishment protocol” 

Multimedia Tools and Applications, vol. 78, pp. 21645–21671, 2019. 

[13] A. Sarkar and B. K. Singh, “A cancelable biometric-based secure session key agreement protocol 

employing elliptic curve cryptography,” International Journal of System Assurance Engineering and Management, 

vol. 10, pp. 1023–1042, 2019. 

[14] F. Kausar, “Iris-based cancelable biometric cryptosystem for secure healthcare smart card,” Egyptian 

Informatics Journal, 2021. 

[15]      S. Adamovic et al., “Fuzzy commitment scheme for generation of cryptographic keys based on iris 

biometrics” IET Biometrics, vol. 6, no. 2, pp. 89–96, 2017.  

[16] M. S. Khalil, D. Mohamad, M. K. Khan, and Q. Al-Nuzaili, “Fingerprint verification using statistical 

descriptors,” Digital Signal Processing, vol. 20, no. 3, pp. 854–861, May 2010. 

[17] L. Ghiani, D. A. Yambay, V. Mura, G. L. Marcialis, F. Roli, and S. A. Schuckers, “LivDet 2011 - 

Fingerprint Liveness Detection Competition 2011,” Proc. Int. Conf. Biometrics (ICB), pp. 208–215, 2012. 

[18] L. Ghiani, D. A. Yambay, V. Mura, G. L. Marcialis, F. Roli, and S. A. Schuckers, “LivDet 2013 

Fingerprint Liveness Detection Competition 2013,” Proc. Int. Conf. Biometrics (ICB), pp. 1–6, 2013. 

 [19] N. Karimian, Z. Guo, M. Tehranipoor, and D. Forte, “Highly reliable key generation from 

electrocardiogram (ECG),” IEEE Transactions on Biomedical Engineering, vol. 64, no. 6, pp. 1400–1411, 2017. 

 [20] A. Sulavko, “Biometric-based key generation and user authentication using acoustic characteristics of the 

outer ear and a network of correlation neurons,” Sensors, vol. 22, no. 23, p. 9551, 2022. 

[21] S. R. Moosavi et al., “Low-latency approach for secure ECG feature- based cryptographic key generation,” 

IEEE Access, vol. 6, pp. 428–442, 2017. 



East Journal of Computer Science 
  

 

 

34 

 
© East Journal of Computer Science 

[22] S. Barman, D. Samanta, and S. Chattopadhyay, “Approach to cryptographic key generation from 

fingerprint biometrics,” International Journal of Biometrics, vol. 7, no. 3, pp. 226–248, 2015. 

[23] S. Barman, D. Samanta, and S. Chattopadhyay, “Fingerprint-based crypto biometric system for network 

security,” EURASIP Journal on Information Security, vol. 2015, no. 3, pp. 1–17, 2015. 

[24] S. Barman, S. Chattopadhyay, D. Samanta, and G. Panchal, “A novel se- cure key-exchange protocol 

using biometrics of the sender and receiver,” Computers & Electrical Engineering, vol. 64, pp. 65–82, 2017. 

  

 


