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Abstract: 

In this article, Reliability analysis of a three-unit identical system is discussed. The units of system may affect by two types of 

failures namely, Lethal Common Cause Shock (LCCS) and Non-Lethal Common Cause Shock (NCCS) failures.  Using 

stochastic process, the set of differential equations of the current model are derived to obtain reliability measures such as 

reliability of the system and Mean Time to Failure (MTTF) in the case of series and parallel. Also, the Maximum Likelihood 

Estimates (MLE) of the above said measures are discussed and presented in numerical illustration by using simulation.  Tables 

display the findings and suggest that LCCS and NCCS are the most dominant causes of failures while studying the 

performance of the systems in reliability theory. 
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1. Introduction 

Reliability is the most accepted analysis tool for solution of engineering problems. It is the parameter which is 

used to assess the effectiveness of the system/item and availability of the system under proper working conditions 

for a given period. Initially, the reliability evaluation techniques have been used in aerospace industry and military 

applications, there after nuclear power plants, electricity supply and continuous process plants were rapidly applied 

the developments of reliability techniques. Situations where the failures of some or even majority of system units 

could lead to partial ability or partial system down time to perform required operations are quite common in 

electrical/mechanical systems. These types of models are also used to describe multi-channel systems (eg. 

telecommunications and transportation).  

While evaluating the system reliability, we need to consider the Common Cause Shock (CCS) failures which can 

severely degrade the reliability of devices, systems etc. These events are purely external causes which produces 

multiple failures. As per the reliability literature, in particular two types of CCS failures viz. Lethal common cause 

shock failures, which is the occurrence of simultaneous outage of all units in the system and the other is non-lethal 

common cause shock failures, which is the occurrence of random number of units to simultaneous outage of several 

units in the system. Some attempts have been made in this direction by several authors. Billinton and Allan [1] 

discussed the role of common cause shock failures in different frame works. Chari et al [2] derived the reliability 

measures of a two unit system in the presence of common cause shock failures. Dhillon [3], [4] discussed the role 

of common cause failures as well as human errors in system reliability aspects. Reddy [5] has developed reliability 

measures for two component non-identical system with common cause failures. Sagar et al [6], [8] and Awgichew 

et al [7] examined the reliability measurements with common cause shock failures for two unit identical system. 

They derived M L estimates of two unit system reliability measures such as frequency of failures in the presence 

of CCS failures. Sreedhar et al [9], [10] analysed two unit non identical system with CCS failures. They studied 

M L estimation approach for estimating reliability indices. 

 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:amarenderkommula@gmail.com
mailto:amarender.reddy@mazcol.edu.om
mailto:akhilesh@gulfcollege.edu.om


East Journal of Applied Science 
 

 

 

2 © East Journal of Applied Science 

1.1 MODEL, ASSUMPTIONS AND NOTATIONS 

In this article, as we discussed in the introduction, none of the authors studies three-unit identical systems with 

LCCS and NCCS failures and maximum likelihood estimation as well. We examined the reliability of the 

redundant system in series as well as parallel configurations. There are four different possible states for the system 

operation: perfect state, minor failed state, major failed state, and completely failed states. The failure rates of each 

unit are constant in nature, but they follow exponential distribution. 

2. Related Work:  

A. Notations:  

 s / t   –  Laplace transform/Time scale variable 

/ /  
  – Failure rate of individual unit / LCCS / NCCS  

0 1/ 
  – Repair rates 

T   – Time to failure of a unit 

p(q)   – The probability of simultaneous failures of units due to NCCS / LCCS 

Pi(t)   – Probability that the system is in state (i = 0, 1, 2, 3) at time t 

   
( ) / ( )LNS LNPR t R t

 – Reliability of the system when units are in series / parallel 

  

ˆ ˆ( ) / ( )LNS LNPR t R t
 – M L estimate of reliability function for series / parallel system 

  
( ) / ( )LNS LNPE T E T

 – Mean time to failure for series / parallel system 

B. Assumptions 

In this paper, we consider the following assumptions: 

1. The system operates effectively until one or more units are functioning. 

2. The system has four states: perfect, minor partially failed, major partially failed, and completely failed. 

3. The system units fail individually and also simultaneously due to lethal common cause shock failures 

or non-lethal common cause shock failures in Poisson manner. 

4. Individual, lethal common cause shock and non-lethal common cause shock failures are independent to 

each other. 

5. A repair man is available and ready to restore minor and major faults whether they are failed individually 

or simultaneously due to common cause shocks. 

6. The repair times of failed units depend on the failure mode and are assumed exponentially distributed. 

C. Notations:  

 s / t   –  Laplace transform/Time scale variable 

/ /  
  – Failure rate of individual unit / LCCS / NCCS  

0 1/ 
  – Repair rates 

T   – Time to failure of a unit 

p(q)   – The probability of simultaneous failures of units due to NCCS / LCCS 

Pi(t)   – Probability that the system is in state (i = 0, 1, 2, 3) at time t 
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( ) / ( )LNS LNPR t R t

 – Reliability of the system when units are in series / parallel 

  

ˆ ˆ( ) / ( )LNS LNPR t R t
 – M L estimate of reliability function for series / parallel system 

  
( ) / ( )LNS LNPE T E T

 – Mean time to failure for series / parallel system    

 

3. Methodology 

In this study, we use a probabilistic method to understand how a power system behaves when it can be in different 

working or failed states. We represent the system using five possible conditions—from fully functional to 

completely broken—and model how it moves between these conditions over time using continuous-time Markov 

chains (CTMC). 

To do this, we create a diagram that maps out every possible change the system can go through, whether it's a 

breakdown or a repair. Based on how often these changes happen, we build a mathematical model (called a 

transition matrix) to analyze the system’s long-term behavior. 

We then calculate important reliability measures like how often the system is available, how long it usually works 

before breaking down (MTTF), and how long it takes to repair (MTTR). Finally, we test how changes in failure 

and repair rates affect these results, helping us pinpoint the most important factors that influence system reliability. 

3.1  STATE TRANSITION DIAGRAM AND DESCRIPTION 

I. MATHEMATICAL MODEL 

In view of the stated assumptions, we formulate state transition diagram of the model in Fig.1. The state description 

of the current model highlights that initially all the units are functioning perfectly and it in a state of s0. After any 

one of the three units is down and others are functioning, it switches to state s1 which is regarded as minor partially 

down state. If two units have failed, it will be passed to s2 that is the major partially down state. In both cases, to 

restore the system we use general repair. State s3 indicates completely down state due to failure of all the three 

units. The quantities that appear in Fig.1 are defined as:
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The set of differential equations associated with the current mathematical model for the above state transition 

diagram are: 

'

0 0 0 10( ) ( ) ( ) ( )
c

P t P t P t  = − + +              (2) 

'

1 0 0 1 0 1 1 2
( ) ( ) ( ) ( ) ( )P t P t P t P t   = − + +           (3) 

'

2 1 1 2 21( ) ( ) ( ( ))P t P t P t  = − +            (4) 

'

3 0 2 2
( ) ( ) ( )

c
P t P t P t = +

           (5) 

Initial conditions: P0(0) = 1, and other state probabilities are zero at t = 0 

Taking Laplace transformation of equations (2) to (5) and using initial conditions, we obtain 

22 2

3 31 1 2 2

0 1 2 3

1 1 2 1 2 3 1 2 33 2 3

( ) exp( ) exp( ) exp( )
( )( ) ( )( ) ( )( )

r r K Lr r K L r r K L
P t rt r t r t

r r r r r r r r r r r r

+ ++ + + +
= − +

− − − − − −                                      (6) 

1 1 2 1 3 1
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0 0 0) ) )
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( )( ) ( )( ) ( )( )

( ( (r r r
P t rt r t r t
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= − +

− − − − − −
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( )( ) ( )( ) ( )( )
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− − − − − −           (8)  
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1

1

1

1

2

3

sin( )

sin

sin

3

3 3

3 3

A
r r

A
r

A
r

r

r









−

−

−

= −

= +

= +




 
 

  
 
 

  
−

           (10) 

 

Here  

( )

3

1 2 1

3

1/2
2

1 2

1

3

2

3

2
3 27

3

4
sin

3

q A
A A A

r A A

q

r


−

=

=

=

− +

−

−








 

  
  

  



East Journal of Applied Science 
 

 

 

5 © East Journal of Applied Science 

 

where 

 

1 2 0 1

1 2 0 2 0 1

( )

(

K

L

   

     

= + + +

= + +





         (11) 

0 1 2 0 11
( )

c
A      = + + ++ +

 

1 1 1 0 0 2 1 2 0 1 0 2 1 22 0 0
( )

c c c c
A                    = + + + ++ ++ + +

 

 

III. SOME RELIABILITY CHARACTERISTICS 

In this section, we derived some performance measures when three units of the system are in series and in parallel 

modes. 

A. Series System 

In this case, all units of the system are in good working condition. The states s1 to s2 and s2 to s3 are absorbing 

states and hence no transition is allowed. Therefore, the reliability function is given by: 

0( ) ( )LNSR t P t=
            

 
2

exp( (4 (1 3 ) )p q t = − + +
         (12) 

And the mean time to failure is: 

0

( ) ( ).
LNS LNS

T R t dtE



= 
 

2
4 (1 3 )

1

p q 
=

+ +
          (13) 

B. Parallel System 

The reliability function for parallel system is: 

0 1 2( ) ( ) ( ) ( )LNPR t P t P t P t= + +
 

            1 2 31 2 3exp( ) exp( ) exp( )M rt M r t M r t= − +
       (14) 

Where 

( )1

2

1 1 0 1 2 1 0 1 1 3 1 2( ) ( ) ( )( )M K Lr r r r r r r    = ++ + + + + − −
 

( )2

2

2 2 0 2 2 1 0 1 2 3 1 2( ) ( ) ( )( )M K Lr r r r r r r    = ++ + + + + − −
 

( )3

2

3 3 0 3 2 1 0 1 1 3 2 3( ) ( ) ( )( )M K Lr r r r r r r    = ++ + + + + − −
 

also 1 2 3
, , , ,K L r r r

are defined in equations (11) and (10) 
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c c c
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and MTTF of parallel system is: 

0

( ) ( ).
LNP LNP

T R t dtE



= 
 

0 1 0 2 1 0 1 2 0 2 10

1 2 3

( )

r r r

           
=

+− + + + +

      (15) 

Where 1 2 0 10 , , ,,    
and 1 2 3, ,r r r

are defined in (1) and (10) 

C. Numerical Illustration 

For illustration purpose by fixing 0 1
0.01, ,1 1.5, 0.3p  = = = =

 and for different values of time-variable  t = 

0, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 units of time, we get different values of reliability for series and parallel 

cases as shown in table 1. 

 

TABLE 1: RELIABILITY FOR SERIES AND PARALLEL SYSTEMS 

Time 

(t) 

Series System Parallel System 

β=0.2, ω=0.2 β=0.3, ω=0.3 β=0.4, ω=0.5 β=0.2, ω=0.2 β=0.3, ω=0.3 β=0.4, ω=0.5 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

1.0000 

0.6863 

0.4710 

0.3233 

0.2219 

0.1523 

0.1045 

0.0717 

0.0492 

0.0338 

0.0232 

1.0000 

0.5918 

0.3502 

0.2073 

0.1227 

0.0726 

0.0430 

0.0254 

0.0150 

0.0089 

0.0053 

1.0000 

0.5103 

0.2604 

0.1329 

0.0678 

0.0346 

0.0277 

0.0090 

0.0046 

0.0023 

0.0012 

1.0000 

0.8761 

0.7703 

0.6776 

0.5960 

0.5243 

0.4612 

0.4057 

0.3569 

0.3139 

0.2761 

1.0000 

0.8293 

0.6908 

0.5756 

0.4796 

0.3997 

0.3330 

0.2775 

0.2313 

0.1927 

0.1605 

1.0000 

0.7804 

0.6074 

0.4722 

0.3670 

0.2852 

0.2217 

0.1723 

0.1339 

0.1041 

0.0809 
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TABLE 2: MTTF FOR SERIES AND PARALLEL SYSTEMS 

 µ = 1, p = 0.2 

 

λ 

Series System  

(β, ω) 

Parallel System  

(β, ω) 

(0.1, 0.1) (0.2, 0.2) (0.3, 0.4) (0.1, 0.1) (0.2, 0.2) (0.3, 0.4) 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

10.163 

7.225 

5.605 

4.579 

3.869 

3.351 

2.955 

2.643 

2.390 

2.182 

6.378 

5.081 

4.223 

3.613 

3.157 

2.803 

2.520 

2.289 

2.097 

1.935 

4.647 

3.918 

3.387 

2.983 

2.665 

2.408 

2.197 

2.019 

1.868 

1.739 

35.702 

27.459 

22.542 

19.275 

16.947 

15.205 

13.851 

12.769 

11.885 

11.149 

21.605 

18.452 

16.215 

14.544 

13.250 

12.218 

11.375 

10.674 

10.082 

9.575 

14.702 

13.131 

11.925 

10.970 

10.195 

9.553 

9.014 

8.553 

8.155 

7.809 

 

IV. ESTIMATION AND SIMULATION 

A. Estimation 

In this, we have attempted Maximum likelihood estimation to estimate the system reliability and MTTF of the 

present model. However, the system is under the influence of NCCS and LCCS failures in addition to individual 

failures. 

Let the samples 1 2
, , .........,

n
x x x

; 1 2
, , .........,

n
y y y

 and 1 2
, , .........,

n
w w w

 with size ‘n’ representing times between 

individual, NCCS and LCCS failures which will obey exponential law.  
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Let the samples 11 12 1
, , .........,

n
z z z

; 21 22 2
, , .........,

n
z z z

  with size ‘n’ number of times between repairs of the units 

with exponential population law.  

1 2
ˆ ˆ ˆ ˆ ˆ, , , ,x y w z z  are the maximum likelihood estimates of 0 1

, , , ,    
 respectively. 

Where, 
1 2

1 2

1 1 1 1 1ˆ ˆ ˆ ˆ ˆ; ; ; ; ;x y w z z
x y w z z

= = = = = ;
i i

x y
x y

n n
= =
  1 2

1 2
; ;

i i i
w z z

w z z
n n n

= = =
  

  

B. Simulation 

We compute M L estimates such as 
ˆ ˆ( ), ( )

LNS LNP
R t R t of the present model by using Monte-Carlo simulation. For a 

range of specified values of the rates of 0 1
, , , ,    

and for the sample size n=5(5)15 were simulated in each 

case with N=20000(30000)100000 in order to evolve mean square error (MSE) in each case by using C++ 

(software). 

4. Result Discussion 

This paper analyzes the reliability measures of a three unit system in series and parallel under the lethal and non-

lethal common cause shock failures. A study of the model with the support of maximum likelihood estimation 

were presented and established empirically. The importance of LCCS and NCCS failures in these types of models 

were discussed through numerical illustration and simulation validity in this article. The following decision can 

be made based on the analysis carried out in this paper. 

Table 1 show evidence for the reliability of the system at various time values. The reliability is decreasing in both 

series and parallel cases when LCCS and NCCS failure rates are increasing. Table II include the variation in the 

MTTF corresponding to different failure rates in series and parallel system. It is observed that MTTF decreases as 

the failure rate increases and also there is a great improvement from series to parallel system. Table III and Table 

IV show the simulation study in order to establish the validity of the proposed maximum likelihood estimates. It 

is observed that the point estimates become more accurate when the sample size is large and mean square error 

decreases with increasing the sample size. 

The model discussed in this article was found to be great importance in proper maintenance analysis, and 

performance evaluation of the system. 

4.1 Tables 

TABLE 3: RELIABILITY ESTIMATION FOR SERIES SYSTEM 

λ = 0.1,  β = 0.2,  ω = 0.3, p = 0.3, t = 1 

SAMPLE SIZE (n = 5)  

N ( )
LNS

tR
 ( )ˆ

LNS
tR  

M S E 

20000 0.577989      0.492346     0.025525 

50000             0.577989      0.491844        0.025762 

80000 0.577989        0.492411 0.025832 
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SAMPLE SIZE (n = 10) 

N ( )
LNS

tR
 ( )ˆ

LNS
tR  

M S E 

20000 0.577989      0.522508        0.011552 

50000             0.577989      0.523343         0.011446 

80000 0.577989        0.523294        0.011507 

SAMPLE SIZE (n = 15) 

N ( )
LNS

tR
 ( )ˆ

LNS
tR  

M S E 

20000 0.577989      0.532862      0.007407 

50000             0.577989      0.533398   0.007394 

80000 0.577989        0.533402  0.007395 

 

TABLE 4: RELIABILITY ESTIMATION FOR PARALLEL SYSTEM 

λ = 0.1, β = 0.2, ω = 0.3, µ0 = 1, µ1 = 1.5, p = 0.3, t = 1 

SAMPLE SIZE (n = 5) 

N ( )
LNP

tR
 ( )ˆ

LNP
tR  

M S E 

20000 0.868255  0.830932      0.003984 

50000             0.868255      0.831099         0.004021 

80000 0.868255        0.831404         0.003957 

 

SAMPLE SIZE (n = 10) 

N ( )
LNP

tR
 ( )ˆ

LNP
tR  

M S E 

20000 0.868255  0.846471         0.001455 

50000             0.868255      0.846431       0.001455 

80000 0.868255        0.846591      0.001446 
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SIZE (n = 15) 

N ( )
LNP

tR
 ( )ˆ

LNP
tR  

M S E 

20000 0.868255  0.851125       0.000879 

50000             0.868255      0.850872      0.000895 

80000 0.868255        0.851039      0.000893 

 

5. Conclusion 

In this study, we developed a practical and detailed model to understand how a power system performs over time, 

especially when it can operate in more than just “working” or “failed” states. We broke the system down into five 

possible conditions—from fully working to completely out of service—and used a method called continuous-time 

Markov chains to track how it moves between these states. 

By creating a transition map and analyzing how often the system shifts from one state to another, we were able to 

calculate important performance measures like how often the system is available, how long it works before failing, 

and how long it takes to fix. Our analysis showed that these changes, especially how quickly the system fails or 

gets repaired, play a big role in overall reliability. 

This approach not only gives a clearer picture of how power systems behave in real life but also helps engineers 

design systems that are more dependable and easier to maintain. 
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