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Abstract 

The study is an extensive computational analysis of groundwater flow in heterogeneous porous media using classical and 

fractional partial differential equations (PDEs). The Finite Difference Method (FDM) is used to solve the classical Laplace 

equation, and in order to model memory and non-local phenomena, a fractional Laplacian formulation, discretized through 

Grünwald-Letnikov approximation, is used. These numerical methods are used to model steady-state piezometric head 

distribution with slope angles, flow coefficients, and domain heterogeneity. Simulations done with MATLAB show that 

fractional models capture anomalous diffusion patterns more accurately than classical ones, especially in systems with spatial 

intricacy and long-range interactions. Surface and contour plots expose the more diffuse, smoother behavior indicative of 

fractional diffusion. This is a singular demonstration of how composite geological environments with by fractional PDEs of 

groundwater dynamics can be modeled within far more flexible and descriptive frameworks. It also serves as foundation for 

the integration of hydrogeological simulation tools and fractional calculus. 

Keywords: Groundwater flow, Heterogeneous porous media, Piezometric head, Fractional Laplacian, Anomalous 
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Nomenclature 
Symbol Description Units 

ϕ Piezometric head (hydraulic potential) 𝑚 

∇2ϕ Laplacian operator (classical diffusion) 𝑚⁻² 

𝛼 Fractional order of the Laplacian dimensionless 

𝐿 Width/length of the domain 𝑚 

𝑚0 Volume flux 𝑚³/s 

𝜃 Slope angle degrees (°) 

𝑁𝑥, 𝑁𝑦 Number of grid points in x and y directions integer 

Δ𝑥 , Δ𝑦 Grid spacing in x and y directions 𝑚 

𝛽 Damping factor for numerical stability dimensionless 

𝑓𝑡 Fractional term (non-local correction factor) varies 

𝜖 Convergence tolerance threshold dimensionless 

Γ Gamma function — 

1. Introduction 

PDEs have become a quintessential framework in the description of a multitude of physical phenomena such as 

fluid flow, heat transfer or diffusion processes in geophysical systems. For classical PDEs, groundwater movement 

is simulated under the local interactions and homogenous medium with the Laplace and Poisson equations. 

Nonetheless, traditional PDE models fail to account for spatial heterogeneity, fracturing, and memory-dependent 

behaviors associated with natural systems such as aquifers. To overcome some of these difficulties, fPDEs have 

been created to incorporate non-integer order derivatives that incorporate long-range spatial correlations and 

memory impacts. These attributes render fractional models especially apt for portraying complex diffusion and 

flow within porous media. Anomalous diffusion is a type of diffusion that takes place in natural geological 

structures and is recognized for non-Fickian transport phenomena which is appropriately explained using 
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fractional derivatives rather than classical ones (Podlubny, 1999; Benson et al, 2000). In this research, our primary 

interest is to analyze the numerical solutions for classical and fractional formulations of groundwater flow. The 

Finite Difference Method (FDM) solves the classical Laplace equation by spatially discretizing the derivatives on 

a regularly spaced grid. For the fractional formulation, non-local effects are introduced through the use of the 

Grünwald-Letnikov approximation of the fractional Laplacian. Both approaches are analyzed qualitatively and 

quantitatively, and the results are visually presented to show relative  

2. Literature Review 

FDM is largely regarded as one of the first and most popular numerical methods designed to solve PDEs in the 

realms of hydrology and fluid mechanics.  While Smith (1985) implemented FDM into groundwater flow and heat 

conduction modeling, LeVeque (2007) focused on the effectiveness and accuracy of FDM for both ordinary and 

partial differential equations. Classical models lack the capacity to incorporate systems with non-local behavior, 

but fractional calculus assists with such framework by adding derivatives of arbitrary order. Podlubny (1999) 

created the first work in the field of mathematics of fractional differential equations, which enables description of 

processes with memory and hereditary features in physics. Meerschaert and Sikorskii (2012) proved the usefulness 

of stochastic models and fractional PDEs in simulation of groundwater systems affected by anomalous transport 

processes. Their research exhibited the greater precision that fractional models produced in combination with 

rugged and heterogeneous aquifers in contrast to traditional formulations. With empirical tests on methods of 

fractional modeling, Benson et al. (2000, 2004) used the fractional advection-dispersion equation to illustrate the 

transport of solutes in complex geologic media. Complex problems involving heat and mass transfer process are 

tackled with numerical solutions to fPDE provided for by Yang et. al. (2010) such as spectral and finite difference 

method. The advancement of computational tools like MATLAB that offer libraries for fast matrix manipulations, 

visualization, and user-defined solvers has simplified these methods (MathWorks, 2023). 

3.  Mathematical Formulations and Numerical Methods 

3.1 Mathematical Formulation 

This model can be developed with the classical Laplace equation for a two dimenaional flow field that is considered 

incompressible, isotropic and homogeneous 

∇2ϕ(x, y) =
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
= 0       (1) 

In this case, 𝑥 and 𝑦 correspond to horizontal and vertical coordinates respectively in a two dimensional space. The 

flow is considered to be in a steady state variation and the head ϕ  has local gradients as maximum. 

In heterogeneous or fractured media, where local assumptions break down, the Laplace equation can be generalized 

using fractional calculus: 

(−∇)
𝛼

2⁄ ϕ(x, y) = 0,             1 < 𝛼 ≤ 2                     (2) 

The fractional Laplacian (−∇)
𝛼

2⁄  accounts for long-range interactions. Physically, 𝛼 governs the degree of 

anomalous diffusion 𝛼 = 2  corresponds to classical diffusion, while lower values indicate subdiffusion, commonly 

observed in porous media. 

3.2 Numerical Implementation 

3.2.1 Finite Difference Method (FDM) for Classical Laplace Equation 

The Finite Difference Method (FDM) is implemented to solve for the piezometric head distribution in a 2D porous 

medium using the classical Laplace equation. MATLAB simulations are used to initialize the width of the column 

(𝐿), volume flux (𝑚0), slope angle (𝜃), number of grid points in the 𝑥 and 𝑦 directions (𝑁𝑥 and 𝑁𝑦), and to compute 
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the grid spacing (Δ𝑥 and Δ𝑦) accordingly. 

The central difference approximation for the second derivatives in two dimensions is:  

𝜕2∅

𝜕𝑥2
≈

∅𝑖+1,𝑗 − 2∅𝑖,𝑗 + ∅𝑖−1,𝑗

∆𝑥2
          (3) 

𝜕2∅

𝜕𝑦2
≈

∅𝑖,𝑗+1 − 2∅𝑖,𝑗 + ∅𝑖,𝑗−1

∆𝑦2
               (4) 

Substituting Equations (5) and (6) into the Laplace equation (1) and combining terms yields the iterative update 

rule: 

∅(𝑛+1)
𝑖,𝑗 =

1

4
(∅(𝑛)

𝑖+1,𝑗+∅(𝑛)
𝑖−1,𝑗 + ∅(𝑛)

𝑖,𝑗+1 + ∅(𝑛)
𝑖,𝑗−1)             (5) 

This equation is solved iteratively until convergence, ensuring that the numerical solution satisfies the harmonic 

nature of the Laplace equation. Convergence is achieved using Gauss-Seidel-like updates that average neighboring 

grid point values until stability is reached. 

3.2.2 Grünwald-Letnikov Discretization for the Fractional Laplacian 

The fractional Laplacian extends the classical model by incorporating long-range memory effects. The continuous 

form is: 

(−∆)𝛼∅(𝑥) = 𝐶𝛼 ∫
∅(𝑥) − ∅(𝑦)

|𝑥 − 𝑦|𝑛+2𝛼
𝑅𝑛

𝑑𝑦.               (6) 

The Grünwald-Letnikov approximation provides a discrete analog: 

(−∆)𝛼∅𝑖,𝑗 ≈ ∑ −1𝑘

𝑁

𝑘=0

Γ(𝛼 + 1)

Γ(𝑘 + 1)Γ(𝛼 − 𝑘 + 1)
𝜙𝑖−𝑘,𝑗.             (7) 

The stabilized update rule becomes: 

𝜙𝑖,𝑗
𝑛𝑒𝑤 = (1 − 𝛽)∅𝑖,𝑗

+ 𝛽 (
1

4
(∅𝑖+1,𝑗 + ∅𝑖−1,𝑗 + ∅𝑖,𝑗+1 + ∅𝑖,𝑗−1) − (∆𝑥𝛼 + ∆𝑦𝛼). 𝑓𝑡)   (8) 

The value 𝛽 is called a quenching parameter and 𝑓𝑡 is the non-local term which represents the fractional term. The 

solver incorporates non-local interactions, where distant grid points directly contribute to local updates, governed 

by the fractional α, which controls the decay rate of long-range effects. Combined with a damping factor 𝛽, the 

iterative process is stabilized, preventing oscillations during numerical updates. Convergence is ensured through 

automated termination criteria, halting iterations once successive solutions differ by less than a tolerance threshold 

max(|∅𝑛𝑒𝑤 − ∅𝑜𝑙𝑑| < 𝜖). These combined features non-locality, controlled decay, damping, and stability checks 

enhance robustness and accuracy when modeling diffusion in complex, heterogeneous systems.  

Here 𝛽 is a damping factor, and 𝑓𝑡  represents the fractional term accounting for non-local interactions. The solver 

incorporates non-local interactions, where distant grid points directly contribute to local updates, governed by the 

fractional α, which controls the decay rate of long-range effects. Combined with a damping factor β, the iterative 

process is stabilized, preventing oscillations during numerical updates. Convergence is ensured through automated 

termination criteria, halting iterations once successive solutions differ by less than a tolerance threshold 

max(|∅𝑛𝑒𝑤 − ∅𝑜𝑙𝑑| < 𝜖). These combined features non-locality, controlled decay, damping, and stability checks 
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enhance robustness and accuracy when modeling diffusion in complex, heterogeneous systems. 

5. Results and Comparison 

5.1 Role of Fractional Order 𝜶 

The fractional order 𝛼 plays a critical role in determining the behavior of the solution. For 𝛼 = 1.5, the solution 

exhibits intermediate characteristics between the classical diffusion equation 𝛼 = 2 and sub-diffusion processes 

𝛼 < 1. Specifically, the solution is smoother and more diffuse compared to the classical case, reflecting the non-

local interactions introduced by the fractional Laplacian. The fractional order enables modeling of complex physical 

phenomena, such as anomalous diffusion, which cannot be captured by the classical Laplace equation [9]. The 

results were visualized using two complementary plots.  

5.2 Convergence Behavior 

The numerical solution was computed using the Finite Difference Method (FDM) with the Grünwald-Letnikov 

approximation for fractional derivatives. A stopping criterion of ‖∅𝜅+1 − ∅𝜅‖∞ < 10−5  ensured convergence, 

with steady-state solutions achieved within 𝑁 = 500 iterations for a 100 × 100 grid. This robust convergence 

aligns with stability requirements for fractional PDEs, where non-local operators demand higher computational 

effort than classical models [10]. 

5.3 Validation Against Benchmarks 

Validation included comparisons between the fractional Laplacian solver 𝛼 = 1.5 and classical FDM 𝛼 = 2, as 

well as analytical benchmarks for homogeneous media [11]. As shown in Table 1, the fractional Laplacian method 

(FLM) outperforms classical FDM in resolving anomalous diffusion, consistent with studies on non-local transport 

in porous media [12]. For example, FLM-generated contours (Figure 2) display gradual transitions contrasting with 

classical FDM’s abrupt gradients, mirroring observations in heterogeneous geological systems [13].  

5.4 Spatial Distribution and Non-Local Effects 

Figure 1 illustrates the 3D surface representation of the piezometric head distribution using the fractional Laplacian 

method 𝛼 = 1.5. The surface reveals a smooth transition of ∅ values across the domain, with boundaries fixed at 

∅ = 1, representing Dirichlet boundary conditions. This smoothness highlights the influence of non-local effects 

and the gradual energy dissipation over distance, a hallmark of fractional diffusion [15]. 

 

Figures 1: 3D Surface Distribution of Piezometric Head Using the Fractional Laplacian Solver (𝛼 =  1.5): Non-

Local Diffusion Effects in Heterogeneous Media 
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In Figure 2, the contour plot shows the 2𝐷 distribution of ∅ obtained via the fractional Laplacian solver. The evenly 

spaced contours indicate a smooth, well-behaved solution, with boundaries clearly visible as regions of constant 

𝜙 = 1. The symmetry and uniformity of ∅align with results from [16] for isotropic fractional diffusion, further 

validating our approach. Unlike the classical Laplace equation, the fractional Laplacian accounts for long-range 

interactions, producing a diffuse distribution that better represents anomalous diffusion in porous media [17]. 

 

Figures 2: Contour Visualization of Steady-State Piezometric Head via Fractional Laplacian Method (𝛼 = 1.5): 

Smooth Gradients and Boundary Influence 

5.5 Computational Complexity and Scalability 

The computational demands of the Fractional Laplacian Method (FLM) and classical Finite Difference Method 

(FDM) diverge significantly due to the non-local nature of fractional operators. As summarized in Table 1, FLM 

incurs higher computational costs—requiring 𝑁 = 500 iterations to resolve long-range dependencies—compared 

to the faster-converging FDM, which leverages localized calculations. This trade-off arises from the Grünwald-

Letnikov approximation, which introduces memory effects and global interactions, increasing the algorithmic for 

FLM in 2D domains [18]. Scalability further highlights this dichotomy. While FDM efficiently scales to finer grids 

(e.g. 200 × 200) with minimal runtime penalties, FLM’s iterative framework faces steep resource growth due to 

its dependence on historical states and non-local stencils. For instance, doubling the grid resolution quadruples 

FLM’s memory footprint, a critical constraint for large-scale simulations in hydrology or materials science. 

However, FLM’s accuracy in modeling anomalous diffusion justifies these costs for systems where long-range 

interactions dominate, such as fractured aquifers or heterogeneous media [18]. Practically, the choice between FDM 

and FLM hinges on the application’s fidelity requirements. FLM remains indispensable for capturing memory-

driven transport, while FDM suffices for classical diffusion-dominated regimes. Parallel computing strategies, such 

as domain decomposition, could mitigate FLM’s scalability challenges a direction for future work. 

Table (1): Comparasion between Feature Finite Difference (FDM) and Fractional Laplacian (FLM) 

Feature Finite Difference (FDM) Fractional Laplacian (FLM) 

Piezometric Head Distribution Produces sharp changes in ϕ Produces smooth, diffused ϕ 

Contour Plots Well-defined sharp 

boundaries 

Gradual transitions between regions 

Computation Speed Faster (fewer calculations) Slower (needs more iterations) 
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Accuracy for Anomalous Diffusion Lower (misses long-range 

effects) 

Higher (includes memory and non-local 

effects) 

 

5.6 Implications for Physical Systems 

The fractional Laplace equation provides a powerful tool for modeling anomalous diffusion in porous media, where 

classical Laplace formulations fail to resolve long-range interactions. The numerical framework presented here 

combining the Finite Difference Method (FDM) with the Grünwald-Letnikov approximation delivers robust 

solutions for fractional PDEs, with applications spanning geophysics, hydrology, and materials science. The steady-

state piezometric head distribution 𝜙, computed for a 2𝐷 domain and visualized in Figures 1 and 2, demonstrates 

the method’s capability to resolve non-local effects introduced by 𝛼 = 1.5. Dirichlet boundary conditions 𝜙 = 1 

ensured a well-posed problem, directly influencing the interior distribution of 𝜙. The solution smoothly transitions 

from the boundaries to the interior, reflecting the dominance of boundary conditions on the steady-state profile. 

Unlike classical Laplace solutions, which exhibit sharp gradients, the fractional Laplacian produces gradual 

variations in 𝜙, consistent with anomalous diffusion in heterogeneous media. The symmetry and uniformity of 𝜙, 

evident in the evenly spaced contours of Figure 2, align with the isotropic nature of the fractional Laplacian and 

homogeneous boundary conditions. These results validate the solver’s stability, as convergence was achieved 

within 𝑁 = 500 iterations under a tolerance of  ‖∅𝜅+1 − ∅𝜅‖∞ < 10−5. Such precision underscores the method’s 

utility for systems governed by memory effects and spatially correlated transport, such as fractured aquifers or 

disordered materials. 

6. Conclusion 

In this comparison of the Finite Difference Method and the Flractional Laplacian Method, it became clear whether 

either approach is better than the other in simulating groundwater flow through uneven porous media. As a method 

of modeling systems determined by local interactions, FDM is proven to be dependable and cost-effective. 

However, it does not have the capacity to model long-range spatial correlations that many systems ultrinsically 

possess. On the other hand, the FLM gets all of these non-local effects and memory behaviors, whereas it also 

produces smoother and physically more realistic piezometric head distributions. This is especially true for 

heterogeneity isotropy or fracturing. The numerical simulations verify that the fractional model gets closer to 

actually replicating modeled hydraulic behavior, which is an improvement for the model but also provides a stronger 

structure for the model for solving anomalous diffusion problems. While the addition of fractional derivatives does 

complicate things further, they do have a positive outcome on representation and accuracy. Definetely classical 

methods can be used in idealized or homogeneous domains, while the fractional approach aids in solving for the 

more complex hydrogeological systems. More investigations may build on these results to systems that rely on 

time-dependent scenarios, 3D systems, and field-scale calibration using observed data. 
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