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Abstract:

We demonstrate that the maximal Nevanlinna counting function and the Carleson function for analytic self-maps of the unit
disk are comparable, up to constant factors. This equivalence establishes a fundamental connection between these two
classical concepts in complex analysis, providing insights into composition operators and their compactness criteria. The
results unify previous findings and highlight the role of Carleson measures and Nevanlinna counting functions in the study of
analytic maps.
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1. Introduction

Carleson measures and the Nevanlinna counting function are two classical concepts in Complex Analysis, which
are closely related to composition operators in a way which we begin by recalling in this introduction.

According to the well-known Littlewood subordination principle (see [1]), any analytic self-map ¢ (often called
Schur function) of the unit disk D generates abounded composition operator C,, on the Hardspace H 2(and all
Hardy spaces HP

Now, it follows from the famous Carleson embedding theorem of 1962 [2] that, given a finite positive measure
on the closed unit disk D see[3] Jensen formula and the Nevanlinna theory of defect (see [4] or [5]) for
meromorphic functions .If the boundedness of C, : H 2 — H? is thus seen to be automatic, its compactness
(especially when ¢ is highly non-injective) does not always hold, and is a much more delicate problem. But it turns
out that its solution can again be given in terms of Carleson measures or of Nevanlinna counting functions. Indeed,
the following little-on theorem was proved by McCluer in 1985 ([6]—see also [7), in terms of so-called vanishing
Carleson measures:

C,: H* - HZis compact &= p,(h) = o (h)ash - 0.

Then, in 1987, Shapiro [3] proved that, The usual Littlewood—Paley identity played an essential role in his work.
A similar situation occurred for the membership of C,, in a Schatten class S,,. In 1987, Luecking [8] proved the

following Carleson measure type rwhere the Rn, j are certain subsets of D. A bit later, Luecking and Zhu [9]
proved that, y being related to the Nevanlinna counting function assault to the Nevanlinna counting function

C,: H* - H*€ S, o Y eLP(4)
where A is the hyperbolic area measure of D.

Some results of a similar flavor, either in terms of Carleson measures or in terms of Nevanlinna counting functions,
can be quoted: for example, Choe [10]and

Theorem (1.1)[11] There exists a universal constant C > 1, such that, for every analyticself-map ¢ : D — D,
one has:

(%) P (g) < sup Ny(w) < Cpy(Ch), (1.1)

lw|z1-h

for h > 0 small enough, namely h < C~1(1 — |p(0)]).
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Theorem (1.2)[ There exist positive constants C;, ¢1, Cy, ¢4, ¢ such that, for every & € dD, one has, for every w €
W h) n D

(i) No(wW) = Cimg[W(E, cih)];

. 1
(11) my, [W(f' h)] < (G h2 W(E,czh) Nd)(w) dA(W),
for h > 0 small enough, namely h < ¢ (1 — [¢(0)]).

Our proof gives C; = 24,c, = 34,C; = 196,and C, = 128, and ¢ = 1/16. Nevertheless, these explicit
constants are not relevant and we did not try to have “best” constants. It can be shown that for every @ > 1, there
is a constant C, > 0 such that my, (S(§,h)) < CoVy(§, ah) and V4(§, h) < Cq my, (S(§, ah)) for 0 < h <
(1 = [¢(0)])/a, where S(§, h) is defined in ¥(§,h) =  min Ny (w)

weS(&,h)nD

The result may appear as not so surprising, but it had not been stated, nor proved, within, and helps unifying the
theory of composition operators (see [11]). It shows in particular that the results of B. McCluer and J. Shapiro on
the one-hand, and of D. Luecking and D. Luecking and K. Zhu on the other hand, are qualitatively the same, even
if the quantitative result sharper. This equivalence between Carleson measures and Nevanlinna counting functions
also seems of independent interest in the theory of complex variables, and might have other applications. We refer,
for instance, to the papers [12,13,14,15]

concerning the Nevanlinna counting function. After this paper was completed we  discovered the
papers[16,17],whose results differ from ours. The proof was inspired to us by the study [18] of Hardy—Orlicz
spaces H attached to a general Orlicz function , which are natural generalizations of Hardy spaces. Although these
spaces are not explicitly present in this work, they are lurking behind

the scene. The main tool is a generalization of the Littlewood—Paley identity, under a form due to Stanton (see
[19], Theorem 2). This Stanton’s formula had been used by Shapiro [3], and later by Choa and Kim [20], but
actually only in the Hil bertian case, which gives nothing else than the Littlewood—Paley identity. As pointed out
to us by the referee, the Stanton formula was also used in non-Hilbertian cases by Shapiro and Sundberg in [21]
and by Liu et al. in [22]. Here, we use the full version of Stanton’s formula, and, though our proofis not technically
difficult, it is by no way straightforward. The paper is organized as follows. definitions and notations, and in
particular attaches to each Schur function ¢ two maximal functions p,, and v,, respectively attached to the Carleson
measure m¢ and to the Nevanlinna counting function N,. Section 2 shows, in a precised sense, that the maximal
Nevanlinna counting function v,, is dominated by the maximal Carleson functionp,, ,shows, similarly, that the
maximal Carleson function p,, is dominated by the maximal Nevanlinna counting function v,,.

Lemma (1.3)Let ¢ be an analytic self map of D. For every z € D, one has, ifw = ¢(2),§ = w/|w|and h =
1 - |w < 1/4:

1
my W(E121)) 2 my (SG,61) 2 (1 — |2]) 2 7=(1 — |20

Proof We may assume, by making a rotation, that w is real and positive: 3/4 < w < 1.

Let:

au + 1

O u+a

(1.2)
Where a=w—3<—1,
w

sothatT : D — D isanalytic,and T (W) = w/2.

If P, is the Poisson kernel at z, one has:
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S =TIp@)] = f (T o )" pydm = f Re[(T o ) Jp,dm
T T

Hence, if one sets:

E={%Re T o¢) 2 w/4} = Re[(T o ¢)] 2 w/4},

One has
w w w w
izfpzdm+zfpzdmsfpzdm+zfpzdm=fpzdm+z
E EC E T E
Therefore
w
f pzdm = Z
E
. 2
Since ||Pz]l, < o 0 Ve get:
w
m(E) = §(1 — |z]). (1.3)

On the other hand, (25) writes

alU—-1
=T_1U =
u W) =——7

(1.4)

11-U| 2la+ 1]
<

1—zl=la+1 <
11—z =la lla—UI @]

Buta < —1 isnegative, so ReU = w/4 implies that

w
|a—U|29%e(U—a)ZZ— =

SHR
|
1w
S
Y
NS

Moreover, forw > 3/4:
la + 1] = (1 —w) (E+ 1)5 E(1 - w).
w 3
We get hence |1 — u| < 6 h when (5-30) holds and ReU = w/4.
It follows that
¢*(E) € T 1 ({ReU = w/4}) < S(1,6h),
givingmg (W(1,12h)) = my (S(1,6h)) = m(E).
Combining this with (26), that finishes the proof.

Theorem (1.4) For every analytic self-map ¢: D = D and every subharmonic function G: D — R, one has

1
lim [ GloGE1amE) = GIpO)15 | AGWINyW)AAGW) (L)
oD

D
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where A is the distributional Laplacia
2- Nevanlinna counting function by the Carleson function
[23,24,25,26] concerning the Nevanlinna counting function.

We discovered the papers [9,6], whose results differ from ours. The proof was inspired to us by the study [5] of
Hardy—Orlicz spaces attached o a general Orlicz function, which are natural generalizations of Hardy spaces.. The
main tool is a generalization of the Littlewood—Paley identity (22), under a form due to Stanton (see [19], Theorem
2). This Stanton’s formula had been used by Shapiro [3], and later by Choa and Kim [20], [21] in [22]. but actually
only in the Hilbertian case, which gives nothing else than the Littlewood—Paley identity

Theorem (2.1)For every analytic self-map ¢ of D, one has, for every a € D:
Ny(a) < 196my, (W(E 12h)), (2.1)

for0 < h <%¢(O)l,where€ = % andh = 1 — |al.

In particular, for 0 < h < (1 — |¢(0)])/4:
vyp(h) = sup Ng(a) < 196 py(12h). (2.2)
la|z1-h

Let us note that, since W({,s) S W(¢,2t) whenever0 < s < tand{ € W(¢,t) N dD, we get from (25) that

sup  Ng(a) < 196my (W (¢, 24h))
wew (&,h)ND

Proof :If a € ¢(D), one has Ny (a) = 0, and the result istrivial. We shall hence assume that a € ¢ (D).
Let ¢:[0,00) — [0, 00) be an Orlicz function, that is a non-decreasing convex function such that ¢(0) = 0 and

¢ () = oo, and we assume that ¢ is also an Orlicz function. In other words, ¢ is an arbitrary non-negative and
non-decreasing function and ¢(x) = f;c p(t)dt and p(x) = fox p(t)dt.

Let now f: D — C be an analytic function. We have, outside the zeroes of f writing A¢p(| f|) =

40 01 f 1%):

ap(1 £ 1) = b0 £ 1)+ ELLL] £ 2 23)

We shall

AP F D = SAFDIFI 2.4)

(this is a not too crude estimate, since, ¢ being an Orlicz function ¢ is non-negative and non-decreasing, and
hence

é(x) =f d(t)dt < x¢p(x) and f d(Hdt > f&(t)dtz(x/Z)ci)(x/Z)
0 0

X/2

Set now, fora € D:
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1—|al
—az

fa(2) = 7 a €D (2.5)

Since ¢ (] f;|) is subharmonic (¢ being convex and non-decreasing) and bounded, we can use Stanton’s formula
as:

10 - .12
[ o0feo@bham =3 [ dafallfalNpda
aD D

Leth = 1 — |a|.For |z — a| < h, one has
[1—az| = |Q-|al®+aa—2)| < A—-|al®) + |a — z| < 3k

Hence | f,(2)| = 1/3 for |z — a| < h. It follows, since q> is non-decreasing:

f¢(|faocp|)|)dm 26(3) [ Vidnpas
D(ah)

-

2 d)a(z)| (we may, and do, assume that 1 — |a| =

Now, if @,(z) = 1_;2, one has | f,(z)| =
h < 1/4); hence:

lal
1+|z|

ba()] = 2

[ oo an=36(3)z | 16alNyas
A a (‘p 2 49 a

D(a,h)
9 :/1
9—(|)( ) f N¢°(pdA
$a(D(ah))
because N¢°q,(c|)a(w)) = No(W) and ;' = @,
But @, (D(a,h)) 2 D(0,1/3): indeed, if |w| < 1/3,thenw = @,(2), with

(1—||) lwl 1/3
‘—(1 T <113

=h

la — z| =

We are going now to use the sub-averaging property of the Nevanlinna function ([1 p. 190], [3 Sect. 4.6], or
[23Proposition 10.2.4]): for every analytic self-map y : D — D, one has

1
Ng(wp) < mj Ny, (w)dA(w) (2.6)
A

for every disk A of center wy which does not contain 1 (0).
Lemma (2.6) For 1 — |a| < (1 — |$(0)])/4, one has |(d, ° $)(0)] > 1/3.
Lemma (2.7) For every £ € dD and every h € (0,1/2], one has:

1 _
|1 - az|? > Z(h2 + |z — &), vz €D, (2.7)

wherea = (1 — h)¢.
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Theorem (2.8)For every analytic self-map ¢ : D — D, one has, for every £ € dD

mge(wW(, h) < 64 sup Ng(w)
weW (§,64h)ND)

for0 < h < (1 — |¢(0)])/16.

vy (&, h) < sup  Ng(w) (2.8)
WEW (§,h)ND)

Proof We shall set:

vyp(§,h) = sup  Ny(w)
WEW (£,R)ND)

Note that
v,(h) = sup vy (S, h)
¢ HE

where v¢is defined in

vy(t) = sup Ng(w)

lw|z1-t
If for some hy > 0, one has v (&, hg) = 0, then ¢(D) & D \ W (&, hy), and hence my(w(§,h) = 0for0 < h <
ho. Therefore we shall assume that v ($,h) > 0. We may, and do, also assume that h < 1/4. By replacing ¢
by ei® ¢, it suffices to estimate mg (S(1, h)) (recall that
S(L,t) ={z € D; |1 —z| <t}).
We shall use the same functions f; as in the proof of Theorem (5.2.1), but, for convenience, with a different
notation. We set, for 0 < r < 1:
1-r
1-rz

u(z) =

(2.9)

Let us take an Orlicz function ¢ as in the beginning of the proof of Theorem (2), which will be precised later.
We shall take this function in such a way that A¢(Ju(¢@(0))|) = 0.

Since ¢p(x) < x ql;)(x) (2.3) becomes:

A (lul) < 26 (Jul) a2
and Stanton’s formula writes, since ¢ (Ju(¢(0))|) = O:

f (o @) dm < f & ((u@DIE@I?)N,dAE) 2.10)
oD D

In all the sequel, we shall fixh,0 < h < 1/4,andtaker = 1 — h.
()For |z] < 1and |1 — z| < h,onehas |1 —rz| =|(1 - z) + hz| < 2h, so:
1-r) 1

>
()| ===
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mg (SCLRY) < f (u@)dmy (2) < f $(lu@dmy (2)

¢(1/2) ¢(1/2)

Zwualﬂm“@“m““)

and so, by (39):

1 .
my (S(L W) < —4= f ¢ ((Iu@DI@)I2)N, (2)dA(z) (2.11)
¢(3)o

We are going to estimate this integral by separating two cases: |1 — z| < hand |1 — z| > h. For convenience,
we shall set:

()= sup Ngp(w) (2.12)
wWEW(1,t)ND
Remark first that
h 1
[u(2)| < W = E

Since |u(z)| < 1, we get hence:

¢ ((lu(2)D1(2)1?)Ng(2)dA(z) < f(b(l) v(h)dA(2)

|1-z|sh S(1,h)

giving, since 4 (S(1,h)) < h%:

[ $ (@Dl PN eAe) < dih 23)
1-z|<h
(ii)) For0 < h < 1/4, one has:
u(z)| < and |[U(2)| £ ——
@l <=y and 6@ < =
indeed, we have |1 —rz| = r E - z| > 1|1 — z| (this is obvious, by drawing a picture), and hence|l —rz| =

2|1 —z|sincer =1~ h > 3/4. We obtain:

2h h2
e IR

& (W@ DI 2Ny (2)dA() < 4 f b No(@)dAR)

|1-z|>h |1-z|>h

Then, using polar coordinates centered at 1 (note that we only have to integrate over an arc of length less than ),
and the obvious inequality Ny (z) < (|1 — z|), we get:
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z ¢ (2h\ h?
| daueblerN @@ <4 [ b(5)Fo0d 214)
1-z|<h

h
We now choose the Orlicz function as follows (with a = ¢(0)):
( 0 if0 <v<h/(1— |a)),
1
ifh/(1 — |a]) < v < 2,

) = {5(2h/v) (2.15)
1
B if v >
5 ifv>2
This function is non- negative and non- decreasing Moreover, one has ¢p(x) =0 for 0 < x < h/(1 — |a]).
Hence, since |u(a)| < ,one has p(Ju(a)]) =
Then
2 2(1-1al) 2
f } (Zh) h” p(t)dt = f f (Zh) h” p(t)dt < fhz dt = = 2.16
(I) t t3 v - (I) t t3 v - ( . )
h h h
1/2 1/2 1/2
—f'tdt>j,tdt>ft;(t>dt>3;(1)
= | dodaz [ bz | Sd(5)a=—d(
0 1/4 1/4

When h < (1 —|al)/8,onehas 1/8 > h/(1 — |a|); hence &)(1/8) = 1/¥(16h), and &)(1) = 1/9(2h). We get
hence, from (40), (42), (43) and (45)

v(h)

64
my (S(LR)) < ?v(16h) [ 5an

+ 2] < 647(16h)

Since

< .
W(1,¢t) € S(1,2t)we get my (w(@, h)) < 64 wegf,gzh)N¢(W) for 0 < h < (1]|¢(0)])/16, and that

ends the proof of Theorem (5.2.8), since S(1,32h) € W (1, 64h).

Theorem(2.9) There are universal constants C,c > 1 such that

mg, (.S' (¢, h)) < N, (z)dA(z)
(s¢.ch)

for every analytic self-map ¢ : D - D, everyé € dD,and 0 < h < (1 — |¢$(0)])/8.

1
A(S(E, ch))

Proof We are going to follow the proof of Theorem (5.2.8) We shall assume that ¢ = 1 and we set:

I(t) = j Ny (2)dA(z) (2.17)
S(1,t)

Then
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When |1 — z| < h, we have, instead of (2.17):

¢ (u(2)DI(2) 12Ny (2)dA(2)

|1- z|<sh

z 1
< fq[)(l) >Ny (2)dA(z) = qb(l)ﬁl(h) (2.18)
S(1,t)

For |z — 1| = h, we write:

d@DR@PNDAUAD =Y [ @D N A
|[1-z|>h k=1hh<|1- z|<(k+1)h
K2

kz ¢ (kh) g (G + Dh) = 42 ( >k4h2 I((k +1h)

We take, witha = ¢(0):

(O if 0 <v<h/(1-1a,
1

I((%+I)h>

, 4
fl b Q@D N A < 5D
1-z|zh =1

d(v) = ifv>h/(1 — [a]). (2.19)

1 5
PR

Sinceh < (1 — |a])/8,0onehas 1/8 > h/(1 — |a|); hence ({)(1/8) = 1(117h) and ¢(1) = 1(;’1) . Therefore

- ” 1(17h)
+_ —1(17h) <128 x 172m

_ 64
Mg (S(E,h))_?l(ﬂh) e izl S

Theorem (2.10) There exist a universal constant K > 0 such that, for every analytic self-map ¢ of D, one has,
for0 < e < 1:

Vo(et) < K ev,(), (2.20)
for t small enough.

vy (§, et) < Kevy(§,), (2.21)

where v (§, €t) = sup Ny (w).
wew (&,s)ND

Theorem (2.11) [ Let ¢ : D — D be an analytic self-map and 1 be an Orlicz function. Then the composition
operator Cg : H?® — HY is compact if and only if

sup Ngp(w) = as h-0 VA>0

o),
wiz1-h (lP(Al/’_l(l/h)
It should be noted, due to the arbitrary A > 0, that (5-51) may be replaced by
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sup VA >0

NyW) < ——F—~
i Mo = ST
for h < hy, this condition also writes, setting vy (h) = sup Ng(w) (see (5-50)):
|lw|z1-h
I Y ia/h)
im-—————-==
h=01h=1(1/ve(h))

Theorem (2.12) Let Y : D — D be an analytic self-map, and 1 be an Orlicz function. Assume that the
composition operator Cyp : H ¥ — HY is compact. Then:

1

-1

I ),

lim =

12120 -1 ( 1 )
1-1¢(2)|

Conversely, if ¢ is finitely-valent, then (53) suffices for Cy, : H ¥ - HY to be compact.

(2.22)

(2.23)

Proof To get the necessity, we could use Theorem (2.11) and the fact that 1 — |z| < log é < Ny (¢(2)); but

we shall give a more elementary proof. Let HMY be the closure of H® in MY. Since Cp(H™) <
H%,Cy mapsHMY into itself and Cop : MY — MY being compact, its restriction Cop* HMY — HMY is compact
too. We know that the evaluation 8, : f € HMY — f(a) € C Chas norm=~ =1 (1_;“1') [19,Lemma 3.11](see

also [262]theorm4.2); hence &, |8l o 0 weak-star (because [6,(f)| =) =1|f (@) <|Ifllw for f €

H®).If Cy is compact, its adjoint Cy is compact as well; we get hence | C;,((Sa/II(SaII)” o 0. But 4,6, =

8¢ (a)- Therefore

v (=)
v (1 —1Ial) o

Conversely, assume that (53) holds. For every A >0, one has, for |z| close enough to ¥~! (1_1|Z|) =

Ayt (1_|;(z)|) in other words, one has: 1/YA(Y~1(1/1 — |¢(2)|) =1 — |z|. But, when ¢ is p-valent, and if

w = ¢(z) with |z| > 0 minimal, one has Ng(w) < plog é ~1—|z|. Since |z| - 1 when |w| =

|$p(z)| = 1 (otherwise, we should have a sequence (z,,) converging to some z, € D and ¢(z,) would converge
to ¢(zo) € D), weget sup |Ny(w) S 1/pAP~1(1/1—|w|) < 1/pAp~*(1/1 — h), for h small enough.
w|z1-h

By Theorem (2.10), with (2.12), that means that Cy, is compact on H ¥
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