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Abstract: 

We demonstrate that the maximal Nevanlinna counting function and the Carleson function for analytic self-maps of the unit 

disk are comparable, up to constant factors. This equivalence establishes a fundamental connection between these two 

classical concepts in complex analysis, providing insights into composition operators and their compactness criteria. The 

results unify previous findings and highlight the role of Carleson measures and Nevanlinna counting functions in the study of 

analytic maps.  
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1. Introduction 

  Carleson measures and the Nevanlinna counting function are two classical concepts in Complex Analysis, which 

are closely related to composition operators in a way which we begin by recalling in this introduction. 

According to the well-known Littlewood subordination principle (see [1]), any analytic self-map 𝜑 (often called 

Schur function) of the unit disk D generates abounded composition operator  𝐶𝜑 on the Hardspace 𝐻2(and all 

Hardy spaces 𝐻𝑝 

Now, it follows from the famous Carleson embedding theorem of 1962 [2] that, given a finite positive measure μ 

on the closed unit disk 𝔻 see[3] Jensen formula and the Nevanlinna theory of defect (see [4] or [5]) for   

meromorphic functions .If the boundedness of 𝐶𝜑 ∶  𝐻
2  →  𝐻2 is thus seen to be automatic, its compactness 

(especially when ϕ is highly non-injective) does not always hold, and is a much more delicate problem. But it turns 

out that its solution can again be given in terms of Carleson measures or of Nevanlinna counting functions. Indeed, 

the following little-on theorem was proved by McCluer in 1985 ([6]—see also [7), in terms of so-called vanishing 

Carleson measures:  

  𝐶𝜑 ∶  𝐻
2  →  𝐻2is compact ⇐⇒ 𝑝𝜑(ℎ)  =  𝑜 (ℎ) 𝑎𝑠 ℎ →  0. 

Then, in 1987, Shapiro [3] proved that, The usual Littlewood–Paley identity played an essential role in his work. 

A similar situation occurred for the membership of 𝐶𝜑 in a Schatten class 𝑆𝑝. In 1987, Luecking [8] proved the 

following Carleson measure type rwhere the Rn, j are certain subsets of D. A bit later, Luecking and Zhu [9] 

proved that, ψ being related to the Nevanlinna counting function assault to the Nevanlinna counting function 

𝐶𝜑 ∶  𝐻
2  →  𝐻2 ∈ 𝑆𝑝 ↔ ψ ∈ L𝑃(ʎ) 

where λ is the hyperbolic area measure of 𝔻. 

Some results of a similar flavor, either in terms of Carleson measures or in terms of Nevanlinna counting functions, 

can be quoted: for example, Choe [10]and  

Theorem (1.1)[11] There exists a universal constant 𝐶 > 1, such that, for every analyticself-map 𝜙 ∶  𝐷 →  𝐷, 

one has: 

(
1

𝐶
)𝜌𝜙 (

ℎ

𝐶
) ≤  sup

|𝑤|≥1−ℎ
𝑁𝜙(𝑤)   ≤  𝐶 𝜌𝜙(𝐶 ℎ),                         (1.1) 

for ℎ >  0 small enough, namely ℎ ≤  𝐶−1(1 − |𝜙(0)|).  
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Theorem (1.2)[ There exist positive constants 𝐶1, 𝑐1, 𝐶2, 𝑐2, 𝑐 such that, for every 𝜉 ∈ 𝜕𝐷, one has, for every 𝑤 ∈
 𝑊(𝜉, ℎ)  ∩  𝐷 

(i)    Nϕ(w)  ≤  C1mϕ[W(ξ, c1h)]; 

(ii) mϕ[𝑊(𝜉, ℎ)]  ≤  𝐶2
1

ℎ2
 ∫ Nϕ(w)𝑊(𝜉,𝑐2ℎ)

𝑑𝐴(𝑤),  

for ℎ >  0 small enough, namely ℎ ≤  𝑐 (1 − |𝜙(0)|). 

Our proof gives 𝐶1 =  24, 𝑐2 =  34, 𝐶1 =  196, 𝑎𝑛𝑑 𝐶2 =  128, and c = 1/16. Nevertheless, these explicit 

constants are not relevant and we did not try to have “best” constants. It can be shown that for every 𝛼 >  1, there 

is a constant 𝐶𝛼 >  0 such that mϕ (𝑆(𝜉, ℎ))  ≤  𝐶𝛼𝜈̃𝜙(𝜉, 𝛼ℎ) and 𝜈𝜙(𝜉, ℎ) ≤ 𝐶𝛼 mϕ (𝑆(𝜉, 𝛼ℎ)) for 0 <  ℎ <

 (1 − |𝜙(0)|)/𝛼, where 𝑆(𝜉, ℎ) is defined in 𝜈(𝜉, ℎ)  =  min
𝑤∈𝑆(𝜉,ℎ)∩𝐷

Nϕ(w)  

The result may appear as not so surprising, but it had not been stated, nor proved, within, and helps unifying the 

theory of composition operators (see [11]). It shows in particular that the results of B. McCluer and J. Shapiro on 

the one-hand, and of 𝐷. Luecking and 𝐷. Luecking and K. Zhu on the other hand, are qualitatively the same, even 

if the quantitative result sharper. This equivalence between Carleson measures and Nevanlinna counting functions 

also seems of independent interest in the theory of complex variables, and might have other applications. We refer, 

for instance, to the papers [12,13,14,15]  

concerning the Nevanlinna counting function. After this paper was completed we  discovered the 

papers[16,17],whose results  differ from ours. The proof was inspired to us by the study [18] of Hardy–Orlicz 

spaces H attached to a general Orlicz function , which are natural generalizations of Hardy spaces. Although these 

spaces are not explicitly present in this work, they are lurking behind 

the scene. The main tool is a generalization of the Littlewood–Paley identity, under a form due to Stanton (see 

[19], Theorem 2). This Stanton’s formula had been used by Shapiro [3], and later by Choa and Kim [20], but 

actually only in the Hil bertian case, which gives nothing else than the Littlewood–Paley identity. As pointed out 

to us by the referee, the Stanton formula was also used in non-Hilbertian cases by Shapiro and Sundberg in [21] 

and by Liu et al. in [22]. Here, we use the full version of Stanton’s formula, and, though our proof is not technically 

difficult, it is by no way straightforward. The paper is organized as follows. definitions and notations, and in 

particular attaches to each Schur function 𝜑 two maximal functions 𝜌𝜑 and 𝑣𝜑 respectively attached to the Carleson 

measure mϕ and to the Nevanlinna counting function 𝑁𝜑. Section 2 shows, in a precised sense, that the maximal 

Nevanlinna counting function 𝑣𝜑  is dominated by the maximal Carleson function𝜌𝜑 ,shows, similarly, that the 

maximal Carleson function 𝜌𝜑 is dominated by the maximal Nevanlinna counting function 𝑣𝜑. 

Lemma (1.3)Let 𝜙 be an analytic self map of 𝐷. For every 𝑧 ∈  𝐷, one has, if 𝑤 =  𝜙(𝑧), 𝜉 =  𝑤/|𝑤| and ℎ =
 1 − |𝑤|  ≤  1/4: 

mϕ (𝑊(𝜉, 12 ℎ))  ≥  mϕ (𝑆(𝜉, 6ℎ))  ≥  
|𝑤|

8
(1 − |𝑧|)  ≥  

1

16
(1 − |𝑧|). 

Proof We may assume, by making a rotation, that 𝑤 is real and positive: 3/4 ≤  𝑤 <  1. 

Let: 

𝑇 (𝑢)  =  
𝑎𝑢 +  1

𝑢 + 𝑎
                                                              (1.2) 

Where               𝑎 =  𝑤 −
2

𝑤
< −1 , 

so that 𝑇 ∶  𝐷 →  𝐷 is analytic, and 𝑇 (𝑤)  =  𝑤/2. 

If 𝑃𝑧 is the Poisson kernel at z, one has: 
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𝑤

2
= 𝑇 [𝜙(𝑧)] = ∫(𝑇

𝑇

∘ 𝜙)∗𝑝𝑧𝑑𝑚 = ∫ ℜ𝑒[(𝑇

𝑇

∘ 𝜙)∗]𝑝𝑧𝑑𝑚 

Hence, if one sets: 

𝐸 =  {ℜ𝑒 (𝑇 ∘ 𝜙)  ≥  𝑤/4}  =  {ℜ𝑒 [(𝑇 ∘  𝜙)∗]  ≥  𝑤/4}, 

One has  

𝑤

2
= ∫ 𝑝𝑧𝑑𝑚

𝐸

+
𝑤

4
∫ 𝑝𝑧𝑑𝑚

𝐸𝐶

≤ ∫ 𝑝𝑧𝑑𝑚

𝐸

+
𝑤

4
∫ 𝑝𝑧𝑑𝑚

𝑇

= ∫ 𝑝𝑧𝑑𝑚

𝐸

+
𝑤

4
 

Therefore  

∫ 𝑝𝑧𝑑𝑚

𝐸

≥
𝑤

4
 

Since ‖Pz‖∞  ≤  
2

1−|z|
  , we get: 

𝑚(𝐸) ≥  
𝑤

8
(1 − |𝑧|).                                               (1.3) 

On the other hand, (25) writes 

𝑢 = 𝑇−1(𝑈) =
𝑎𝑈 −  1

𝑎 − 𝑈
                                                (1.4) 

|1 − 𝑧| = |𝑎 + 1|
|1 − 𝑈|

|𝑎 − 𝑈|
≤
2|𝑎 +  1|

|𝑎 − 𝑈|
 

But 𝑎 <  −1 is negative, so ℜ𝑒𝑈 ≥ 𝑤/4 implies that 

|𝑎 −  𝑈|  ≥  ℜ𝑒 (𝑈 −  𝑎)  ≥  
𝑤

4
 −  𝑎 =  

2

𝑤
  − 

3

4
  𝑤 ≥  

5

4
 

Moreover, for 𝑤 ≥  3/4: 

|𝑎 +  1|  =  (1 −  𝑤) (
2

𝑤
+  1) ≤  

11

3
(1 −  𝑤). 

We get hence |1 −  𝑢|  ≤  6 ℎ when (5-30) holds and ℜ𝑒𝑈 ≥  𝑤/4. 

It follows that 

𝜙∗(𝐸)  ⊆  𝑇−1 ({ℜ𝑒𝑈 ≥  𝑤/4})  ⊆  𝑆(1, 6ℎ), 

giving 𝑚𝜙 (𝑊(1, 12ℎ)) ≥  𝑚𝜙  (𝑆(1, 6ℎ)) ≥  𝑚(𝐸). 

Combining this with (26), that finishes the proof. 

Theorem (1.4) For every analytic self-map 𝜙: 𝐷 → 𝐷 and every subharmonic function 𝐺: 𝐷 →  𝑅, one has 

lim
𝑟↑1

∫ 𝐺[𝜙(𝑟𝜉)]𝑑𝑚(𝜉 ) = 𝐺[𝜙(0)]
1

2
𝜕𝐷

∫ ∆𝐺(𝑤)𝑁𝜙(𝑤)𝑑𝐴(𝑤)                  (1.5)

𝐷
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where ∆ is the distributional Laplacia 

2- Nevanlinna counting function by the Carleson function 

[23,24,25,26] concerning the Nevanlinna counting function. 

We discovered the papers [9,6], whose results differ from ours. The proof was inspired to us by the study [5] of 

Hardy–Orlicz spaces attached o a general Orlicz function, which are natural generalizations of Hardy spaces.. The 

main tool is a generalization of the Littlewood–Paley identity (22), under a form due to Stanton (see [19], Theorem 

2). This Stanton’s formula had been used by Shapiro [3], and later by Choa and Kim [20], [21] in [22].  but actually 

only in the Hilbertian case, which gives nothing else than the Littlewood–Paley identity 

 

Theorem (2.1)For every analytic self-map 𝜙 of D, one has, for every 𝑎 ∈  𝐷: 

Nϕ(a) ≤  196mϕ (W(ξ, 12h)),                                           (2.1) 

for 0 <  ℎ <
1 − |𝜙(0)|

4
, where 𝜉 =  

𝑎

|𝑎|
  and ℎ =  1 − |𝑎|. 

In particular, for 0 <  ℎ <  (1 − |𝜙(0)|)/4: 

vϕ(ℎ) = sup
|𝑎|≥1−ℎ

Nϕ(a)   ≤  196 𝜌𝜙(12ℎ).                         (2.2) 

  

 

Let us note that, since 𝑊(𝜁, 𝑠)  ⊆  𝑊(𝜉, 2𝑡) whenever 0 <  𝑠 ≤  𝑡 and 𝜁 ∈  𝑊(𝜉, 𝑡) ∩ 𝜕𝐷, we get from (25) that 

sup
𝑤∈𝑊(𝜉,ℎ)∩D

Nϕ(a) ≤  196mϕ (𝑊(𝜉, 24ℎ)) 

Proof :If 𝑎 ∉  𝜙(𝐷), one has 𝑁𝜙(𝑎) = 0, and the result istrivial. We shall hence assume that 𝑎 ∈  𝜙(𝐷). 

Let 𝜙: [0,∞)  →  [0,∞) be an Orlicz function, that is a non-decreasing convex function such that 𝜙(0) = 0 and 

𝜙(∞) = ∞, and we assume that 𝜙́ is also an Orlicz function. In other words, 𝜙́́  is an arbitrary non-negative and 

non-decreasing function and 𝜙́(𝑥)  = ∫  𝜙́́(
𝑥

0
𝑡)𝑑𝑡  𝑎𝑛𝑑 𝜙(𝑥)  = ∫  𝜙́(

𝑥

0
𝑡)𝑑𝑡. 

Let now 𝑓 ∶  𝐷 →  𝐶 be an analytic function. We have, outside the zeroes of 𝑓 writing   ∆𝜙(| 𝑓 |)  =

 4𝜕 𝜕̅𝜙(√| 𝑓 |2): 

                                            ∆𝜙(| 𝑓 |) = [𝜙́́(| 𝑓 |) +
𝜙́(| 𝑓 |)

| 𝑓 |
] | 𝑓́ |2                                (2.3) 

We shall 

                                                 ∆𝜙(| 𝑓 |) ≥ 𝜙̈(| 𝑓 |)| 𝑓́ |
2
                                      (2.4) 

(this is a not too crude estimate, since, 𝜙́ being an Orlicz function 𝜙́́  is non-negative and non-decreasing, and 

hence 

𝜙́(𝑥)  = ∫  𝜙́́(

𝑥

0

𝑡)𝑑𝑡 ≤ 𝑥𝜙́(𝑥) and ∫  ϕ́́(

x

0

t)dt ≥ ∫  ϕ́́(

x

x/2

t)dt ≥ (x/2)ϕ́́(x/2) 

Set now, for 𝑎 ∈  𝐷: 



East Journal of Applied Science 
 

 

58 

Volume 1, Issue 1 

Publisher: East Publication & Technology 
DOI: https://doi.org/10.63496/ejas.Vol1.Iss1.51 

ISSN: 3079-9392 

© East Journal of Applied Science 

𝑓𝑎(𝑧) =
1 − |𝑎|

1 − 𝑎̅𝑧
                 𝑎 ∈  𝐷̅                                 (2.5)  

Since ϕ(| 𝑓𝑎|) is subharmonic (ϕ being convex and non-decreasing) and bounded, we can use Stanton’s formula 

as: 

∫ ϕ(|𝑓𝑎 ∘ φ|)|)

𝜕𝐷

dm ≥
1

2
∫ ϕ́́(|𝑓𝑎||𝑓́𝑎|

2
)𝑁φ𝑑𝐴

D

 

 

Let ℎ =  1 − |𝑎|. 𝐹𝑜𝑟 |𝑧 −  𝑎|  <  ℎ, one has 

|1 − 𝑎̅𝑧|  =  |(1 − |𝑎|2) + 𝑎̅(𝑎 −  𝑧)|  ≤  (1 − |𝑎|2)  + |𝑎 −  𝑧|  ≤  3ℎ; 

Hence | 𝑓𝑎(𝑧)|  ≥  1/3 for |𝑧 −  𝑎| < ℎ. It follows, since ϕ́́ is non-decreasing: 

∫ ϕ(|𝑓𝑎 ∘ φ|)|)

𝜕𝐷

dm ≥
1

2
ϕ́́ (
1

3
) ∫ |𝑓́𝑎|

2
𝑁𝜙𝑑𝐴

D(a,h)

 

Now, if φa(z)  =  
a−z

1−a̅z
 , one has | fa(z)| =

|a|

1+|z|
|ϕ́a(z)| ≥

3

7
 |ϕ́a(z)|  (we may, and do, assume that 1 − |𝑎|  =

 ℎ ≤  1/4); hence: 

∫ ϕ(|𝑓𝑎 ∘ φ|)|)

𝜕𝐷

dm ≥
1

2
ϕ́́ (
1

3
)
9

49
∫ |ϕ́𝑎|

2
𝑁φ𝑑𝐴

D(a,h)

 

9

98
ϕ́́ (
1

3
) ∫ 𝑁𝜙∘φ𝑑𝐴

ϕa(D(a,h))

 

𝑏𝑒𝑐𝑎𝑢𝑠𝑒    𝑁𝜙∘φ(ϕa(w)) = 𝑁φ(𝑤) 𝑎𝑛𝑑 ϕa
−1 = φa 

But φa (𝐷(𝑎, ℎ))  ⊇  𝐷(0, 1/3): indeed, if |𝑤| < 1/3, then 𝑤 = φa(𝑧), with 

|𝑎 −  𝑧| = |
(1 − |𝑎|2)𝑤

1 − 𝑎̅𝑤
| ≤ (1 − |𝑎|2)

|𝑤|

1 − |𝑤|
< 2ℎ

1/3

1 − 1/3
= ℎ 

We are going now to use the sub-averaging property of the Nevanlinna function ([1 p. 190], [3 Sect. 4.6], or 

[23Proposition 10.2.4]): for every analytic self-map 𝜓 ∶  𝐷 →  𝐷, one has 

𝑁𝜙(𝑤0) ≤
1

𝐴(∆)
∫ 𝑁φ(𝑤)𝑑𝐴(𝑤)                               (2.6

∆

) 

for every disk ∆ of center 𝑤0 which does not contain 𝜓(0). 

Lemma (2.6) For 1 − |a| < (1 − |ϕ(0)|)/4, one has |(ϕa ∘ ϕ)(0)| > 1/3. 

Lemma (2.7) For every 𝜉 ∈ 𝜕𝐷 and every ℎ ∈  (0, 1/2], one has: 

|1 − 𝑎̅𝑧|2 ≥ 
1

4
(ℎ2 + |𝑧 −  𝜉 |2),                                ∀𝑧 ∈ 𝐷̅,                  (2.7) 

where 𝑎 =  (1 −  ℎ)𝜉 . 
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Theorem (2.8)For every analytic self-map 𝜙 ∶  𝐷 →  𝐷, one has, for every 𝜉 ∈ 𝜕𝐷 

𝑚𝜙(𝑤(𝜉, ℎ) ≤ 64 sup
𝑤∈𝑊(𝜉,64ℎ)∩𝐷)

𝑁𝜙(𝑤) 

for 0 <  ℎ <  (1 − |𝜙(0)|)/16. 

𝑣𝜙(𝜉, ℎ) ≤ sup
𝑤∈𝑊(𝜉,ℎ)∩𝐷)

𝑁𝜙(𝑤)                                               (2.8) 

Proof   We shall set: 

 

𝑣𝜙(𝜉, ℎ) = sup
𝑤∈𝑊(𝜉,ℎ)∩𝐷)

𝑁𝜙(𝑤) 

Note that   

𝑣𝜑(ℎ) = sup
|𝜉|=1

𝑣𝜙(𝜉, ℎ) 

where 𝑣𝜙is defined in  

𝑣𝜑(𝑡) = sup
|𝑤|≥1−𝑡

𝑁𝜙(𝑤) 

If for some ℎ0 > 0, one has 𝑣𝜙(𝜉, ℎ0) = 0, then 𝜙(𝐷) ⊆  𝐷 \ 𝑊(𝜉, ℎ0), and hence 𝑚𝜙(𝑤(𝜉, ℎ) = 0 for 0 < ℎ <

ℎ0. Therefore we shall assume that 𝑣𝜙(𝜉, ℎ)  >  0. We may, and do, also assume that ℎ ≤  1/4. By replacing 𝜙 

by 𝑒𝑖𝜃ϕ, it suffices to estimate 𝑚𝜙(𝑆(1, ℎ)) (recall that 

 𝑆(1, 𝑡)  =  {𝑧 ∈  𝐷; |1 −  𝑧|  ≤  𝑡}). 

We shall use the same functions 𝑓𝑎 as in the proof of Theorem (5.2.1), but, for convenience, with a different 

notation. We set, for 0 <  𝑟 <  1: 

𝑢(𝑧) =
1 − 𝑟

1 − 𝑟𝑧
                                                  (2.9) 

     Let us take an Orlicz function 𝜙 as in the beginning of the proof of Theorem (2), which will be precised later. 

We shall take this function in such a way that ∆𝜙(|𝑢(𝜑(0))|)  =  0. 

Since 𝜙́(𝑥)  ≤  𝑥 𝜙́́(x) (2.3) becomes: 

∆𝜙(|𝑢|) ≤ 2𝜙́́(|𝑢|)|𝑢́|2 

and Stanton’s formula writes, since 𝜙(|𝑢(𝜙(0))|)  =  0: 

∫ ϕ(|𝑢 ∘ φ|)

𝜕𝐷

dm ≤ ∫ 𝜙́́

D

((|𝑢(𝑧)|)|𝑢́(𝑧)|2)𝑁𝜙𝑑𝐴(𝑧)                                  (2.10) 

In all the sequel, we shall fix h, 0 <  ℎ ≤  1/4, and take 𝑟 =  1 −  ℎ. 

(i)For |𝑧|  ≤  1 and |1 −  𝑧| ≤ ℎ, one has |1 − 𝑟𝑧| = |(1 −  𝑧) + ℎ𝑧| ≤ 2ℎ, so: 

|𝑢(𝑧)| ≥
(1 − 𝑟)

2ℎ
=
1

2
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𝑚𝜙 (𝑆(1, ℎ)) ≤
1

𝜙(1/2)
∫ 𝜙(|𝑢(𝑧)|)𝑑𝑚𝜙 (𝑧)

𝑆(1,ℎ)

≤
1

𝜙(1/2)
∫ 𝜙(|𝑢(𝑧)|)𝑑𝑚𝜙 (𝑧)

𝐷̅

≥
1

𝜙(1/2)
∫ 𝜙(|(𝑢 ∘ φ)(𝑧)|)𝑑𝑚(𝑧)

𝑇

 

and so, by (39): 

𝑚𝜙 (𝑆(1, ℎ)) ≤
1

𝜙 (
1
2)
∫ 𝜙́́

D

((|𝑢(𝑧)|)|𝑢́(𝑧)|2)𝑁𝜑(𝑧)𝑑𝐴(𝑧)                          (2.11) 

We are going to estimate this integral by separating two cases: |1 −  𝑧| ≤  ℎ and |1 −  𝑧| >  ℎ. For convenience, 

we shall set: 

𝑣̃(𝑡) = sup
𝑤∈𝑊(1,𝑡)∩𝐷

𝑁𝜙(𝑤)                                                        (2.12) 

 

Remark first that 

|𝑢́(𝑧)| ≤
ℎ

(1 − 𝑟)2
=
1

ℎ
 

Since |𝑢(𝑧)|  ≤  1, we get hence: 

∫ 𝜙́́

|1− 𝑧|≤ℎ 

((|𝑢(𝑧)|)|𝑢́(𝑧)|2)𝑁𝜙(𝑧)𝑑𝐴(𝑧) ≤ ∫ 𝜙́́

S(1,h)

(1)
1

ℎ2
𝑣̃(ℎ)𝑑𝐴(𝑧) 

giving, since 𝐴 (𝑆(1, ℎ))  ≤  ℎ2: 

∫ 𝜙́́

|1− 𝑧|≤ℎ 

((|𝑢(𝑧)|)|𝑢́(𝑧)|2)𝑁𝜙(𝑧)𝑑𝐴(𝑧) ≤ 𝜙́́(1)𝑣̃(ℎ)                               (2.3) 

 (ii) For 0 <  ℎ ≤  1/4, one has: 

|𝑢(𝑧)| ≤
2ℎ

|1 − 𝑧|
    𝑎𝑛𝑑 |𝑢́(𝑧)| ≤

2ℎ

|1 − 𝑧|2
 

indeed, we have |1 − 𝑟𝑧|  =  𝑟 |
1

2
− 𝑧| ≥  𝑟 |1 −  𝑧| (this is obvious, by drawing a picture), and hence|1 − 𝑟𝑧|  ≥

 
3

4
|1 − 𝑧|,since 𝑟 = 1 −  ℎ ≥  3/4. We obtain: 

∫ 𝜙́́

|1− 𝑧|>ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧) ≤ 4 ∫ ϕ́́

|1− z|>ℎ

(
2h

|1 − z|
)

h2

|1 − z|4
Nϕ(z)dA(z) 

Then, using polar coordinates centered at 1 (note that we only have to integrate over an arc of length less than 𝜋), 

and the obvious inequality  𝑁𝜙(𝑧)  ≤ 𝑣̃(|1 −  𝑧|), we get: 
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∫ 𝜙́́

|1− 𝑧|≤ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧) ≤ 4∫ ϕ́́

h

(
2h

t
)
h2

t3
𝑣̃(t)dt                       (2.14) 

We now choose the Orlicz function as follows (with 𝑎 =  𝜙(0)): 

ϕ́́(𝑣) =

{
 
 

 
 

0                    if  0 ≤  v ≤  h/(1 − |a|),
1

𝑣̃(2h/𝑣)
               if h/(1 − |a|)  <  𝑣 <  2,

1

𝑣̃(h)
                                                 if 𝑣 ≥ 2

                                    (2.15) 

This function is non-negative and non-decreasing. Moreover, one has  𝜙(𝑥) = 0 for 0 ≤  𝑥 ≤  ℎ/(1 − |𝑎|). 

Hence, since |𝑢(𝑎)| ≤
ℎ

1−|a|
, one has 𝜙(|𝑢(𝑎)|)  =  0. 

Then 

∫ ϕ́́

2

h

(
2h

t
)
h2

t3
𝑣̃(t)dt = ∫ ϕ́́

2(1−|a|)

h

(
2h

t
)
h2

t3
𝑣̃(t)dt ≤ ∫

h2

t3

2

h

dt =
1

2
                 (2.16) 

 

  

ϕ(
1

2
) = ∫ ϕ́(t)

1/2

0

dt ≥ ∫ ϕ́(t)

1/2

1/4

dt ≥ ∫
t

2

1/2

1/4

ϕ́́ (
t

2
)dt ≥

3

64
ϕ́́ (
1

8
) 

When ℎ < (1 − |𝑎|)/8, one has 1/8 > ℎ/(1 − |𝑎|); hence ϕ́́(1/8)  = 1/𝑣̃(16ℎ), and ϕ́́(1)  =  1/𝑣̃(2ℎ). We get 

hence, from (40), (42), (43) and (45) 

𝑚𝜙 (𝑆(1, ℎ)) ≤
64

3
𝑣̃(16ℎ) [

𝑣̃(ℎ)

𝑣̃(2ℎ)
+ 2] ≤ 64𝑣̃(16ℎ) 

Since  

𝑊(1, 𝑡) ⊆  𝑆(1, 2𝑡)we get 𝑚𝜙  (𝑊(1, ℎ)) ≤ 64 min
𝑤∈𝑆(1,32ℎ)

𝑁𝜑(𝑤)  for       0 <  ℎ <  (1 |𝜙(0)|)/16, and that 

ends the proof of Theorem (5.2.8), since 𝑆(1, 32ℎ)  ⊆ 𝑊(1, 64ℎ). 

Theorem(2.9) There are universal constants 𝐶, 𝑐 >  1 such that 

𝑚𝜑  (𝑆(𝜉, ℎ)) ≤
1

𝐴(𝑆(𝜉, 𝑐ℎ))
∫ 𝑁𝜑(𝑧)𝑑𝐴(𝑧)                       

(𝑆(𝜉,𝑐 ℎ))

 

for every analytic self-map 𝜑 ∶ 𝐷 → 𝐷, every 𝜉 ∈ 𝜕𝐷, and 0 < ℎ < (1 − |𝜙(0)|)/8. 

Proof We are going to follow the proof of Theorem (5.2.8) We shall assume that 𝜉 =  1 and we set: 

𝐼(𝑡) = ∫ 𝑁𝜙(𝑧)𝑑𝐴(𝑧)

𝑆(1,𝑡)

                                                          (2.17) 

Then  
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When |1 −  𝑧|  <  ℎ, we have, instead of (2.17): 

∫ 𝜙́́

|1− 𝑧|≤ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧) 

≤ ∫ 𝜙́́(1)
1

ℎ2
𝑁𝜙(𝑧)𝑑𝐴(𝑧)

𝑆(1,𝑡)

= 𝜙́́(1)
1

ℎ2
𝐼(ℎ)                            (2.18) 

For |𝑧 −  1|  ≥  ℎ, we write: 

∫ 𝜙́́

|1− 𝑧|>ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧) = ∑ ∫ 𝜙́́

ℎℎ≤|1− 𝑧|<(𝑘+1)ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧)

∞

𝑘=1

≤ 4∑ 𝜙́́ (
2ℎ

𝑘ℎ
)
ℎ2

𝑘4ℎ4

∞

𝑘=1

𝐼((𝑘 + 1)ℎ) = 4∑ 𝜙́́ (
2

𝑘
)
1

𝑘4ℎ2

∞

𝑘=1

𝐼((𝑘 + 1)ℎ) 

We take, with 𝑎 =  𝜙(0): 

𝜙́́(𝑣) =

{
 
 

 
 0      if         0 ≤  v ≤  h/(1 − |a|) ,

1

I ((
2
v + I) h)

    if v > ℎ/(1 − |a|) .                         (2.19) 

∫ 𝜙́́

|1− 𝑧|≥ℎ 

(|𝑢(𝑧)|)|𝑢́(𝑧)|2𝑁𝜙(𝑧)𝑑𝐴(𝑧) ≤
4

ℎ2
∑

1

𝑘4

∞

𝑘=1

≤
5

ℎ2
 

Since ℎ <  (1 − |𝑎|)/8, one has 1/8 >  ℎ/(1 − |𝑎|); hence 𝜙́́(1/8) =
1

𝐼 (17ℎ) 
 and  𝜙́́(1) =  

1

𝐼 (3ℎ) 
 . Therefore 

𝑚𝜙  (𝑆(𝜉, ℎ)) ≤
64

3
𝐼(17ℎ) [

1

ℎ2
𝐼(ℎ)

𝐼(3ℎ)
+
5

ℎ2
] ≤

64

3
𝐼(17ℎ)

6

ℎ2
 ≤ 128 × 172

I (17h)

A(S (1,17h))
 

Theorem (2.10) There exist a universal constant 𝐾 >  0 such that, for every analytic self-map 𝜙 of D, one has, 

for 0 <  𝜀 <  1: 

𝜈𝜑(𝜀 𝑡) ≤  𝐾 𝜀 𝜈𝜑(𝑡),                                                (2.20) 

for t small enough. 

𝜈𝜑(𝜉, 𝜀𝑡) ≤  𝐾 𝜀 𝜈𝜑(𝜉, 𝑡),                                         (2.21) 

where 𝜈𝜙(𝜉, 𝜀𝑡)  =  sup
𝑤∈𝑊(𝜉,𝑠)∩𝐷

𝑁𝜙(𝑤) . 

Theorem (2.11) [ Let 𝜑 ∶  𝐷 →  𝐷 be an analytic self-map and 𝜓 be an Orlicz function. Then the composition 

operator 𝐶𝜙 ∶  𝐻
𝜙 → 𝐻𝜓 is compact if and only if 

sup
|𝑤|≥1−ℎ

𝑁𝜙(𝑤) = 𝑂 (
1

𝜓(𝐴𝜓−1(1/ℎ)
)           𝑎𝑠   ℎ → 0    ∀𝐴 > 0 

It should be noted, due to the arbitrary 𝐴 >  0, that (5-51) may be replaced by 
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sup
|𝑤|≥1−ℎ

𝑁𝜙(𝑤) ≤
1

𝜓(𝐴𝜓−1(1/ℎ)
                    ∀𝐴 > 0 

for ℎ ≤  ℎ𝐴, this condition also writes, setting νϕ(h)  =  sup
|w|≥1−h

Nϕ(w) (see (5-50)): 

lim
ℎ→0

𝜓−1(1/ℎ)

𝜓−1(1/νϕ(h))
= 0                                                   (2.22) 

Theorem (2.12) Let 𝜓 ∶  𝐷 →  𝐷 be an analytic self-map, and 𝜓 be an Orlicz function. Assume that the 

composition operator 𝐶𝜙 ∶  𝐻
𝜓 → 𝐻𝜓 is compact. Then: 

lim
|𝑧|→0

𝜓−1 (
1

1 − |𝑧|
)

𝜓−1 (
1

1 − |𝜙(𝑧)|
)
= ∞                                                              (2.23) 

Conversely, if 𝜙 is finitely-valent, then (53) suffices for 𝐶𝜙 ∶  𝐻
𝜓 → 𝐻𝜓 to be compact. 

Proof To get the necessity, we could use Theorem (2.11) and the fact that  1 − |𝑧|  ≤ 𝑙𝑜𝑔 
1

|𝑧|
 ≤ 𝑁𝜙 (𝜙(𝑧)); but 

we shall give a more elementary proof. Let 𝐻𝑀𝜓 be the closure of 𝐻∞ in 𝑀𝜓. Since 𝐶𝜙(𝐻
∞)  ⊆

 𝐻∞, 𝐶𝜙 maps𝐻𝑀𝜓 into itself and  𝐶𝜙 ∶  𝑀
𝜓 → 𝑀𝜓 being compact, its restriction  𝐶𝜙 ∶  𝐻𝑀

𝜓 → 𝐻𝑀𝜓 is compact 

too. We know that the evaluation 𝛿𝑎 ∶  𝑓 ∈ 𝐻𝑀
𝜓 →  𝑓(𝑎) ∈ 𝐶 Chas norm≈ 𝜓−1 (

1

1−|𝑎|
) [19,Lemma 3.11](see 

also [262]theorm4.2); hence 𝛿𝑎  ‖𝛿𝑎‖ |𝑧|→1
→   0 weak-star (because |𝛿𝑎( 𝑓 )| = | )| = | 𝑓 (𝑎)|  ≤ ‖𝑓‖∞ 𝑓𝑜𝑟 𝑓 ∈

𝐻∞). 𝐼𝑓  𝐶𝜙 is compact, its adjoint 𝐶𝜙
∗  is compact as well; we get hence ‖𝐶𝜙

∗ (𝛿𝑎/‖𝛿𝑎‖)‖ |𝑎|→1
→   0. But 𝐶𝜙

∗𝛿𝑎 =

 𝛿𝜙(𝑎). Therefore 

𝜓−1 (
1

1 − |𝜓(𝑎)|
)

𝜓−1 (
1

1 − |𝑎|
)

|𝑧|→1
→   0 

Conversely, assume that (53) holds. For every 𝐴 > 0, one has, for |𝑧| close enough to 𝜓−1 (
1

1−|𝑧|
) ≥

𝐴𝜓−1 (
1

1−|𝜙(𝑧)|
) in other words, one has: 1/𝜓𝐴(𝜓−1(1/1 − |𝜙(𝑧)|)  ≥ 1 − |𝑧|. But, when 𝜙 is p-valent, and if 

𝑤 =  𝜙(𝑧) 𝑤𝑖𝑡ℎ |𝑧|  >  0 minimal, one has 𝑁𝜙(𝑤) ≤  𝑝 𝑙𝑜𝑔 
1

|𝑧|
 ≈ 1 − |𝑧|. Since |𝑧|  →  1 when |𝑤|  =

 |𝜙(𝑧)|  →  1 (otherwise, we should have a sequence (𝑧𝑛) converging to some 𝑧0 ∈ 𝐷 and 𝜙(𝑧𝑛) would converge 

to 𝜙(𝑧0)  ∈  𝐷), we get sup
𝑤|≥1−ℎ

| 𝑁𝜙(𝑤)  ≲ 1/𝜓𝐴𝜓
−1(1/1 − |𝑤|)  ≤  1/𝜓𝐴𝜓−1(1/1 −  ℎ), for h small enough. 

By Theorem (2.10), with (2.12), that means that 𝐶ϕ is compact on 𝐻𝜓 
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